首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,,试证明存在ξ∈(a,b) 使.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,,试证明存在ξ∈(a,b) 使.
admin
2020-03-15
68
问题
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,
,试证明存在ξ∈(a,b)
使
.
选项
答案
[*],函数φ(x)在区间(a,b)内可导,且 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vZA4777K
0
考研数学二
相关试题推荐
求齐次线性方程组的通解,并将其基础解系单位正交化。
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,—1,0,1),α4=(5,1,6,2),α5=(2,—1,4,1)。求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示。
已知α1,α2,α3是三维向量空间的一个基,若β1=α1+α2+α3,β2=3α2+α3,β3=α1—α2,则由基α1,α2,α3到基β1,β2,β3的过渡矩阵是_________。
已知二次型f(x1,x2,x3)=(1—a)x12+(1—a)x22+2x32+2(1+a)x1x2的秩为2。求正交变换x=Qy,把f(x1,x2,x3)化成标准形。
已知实二次型f(x1,x2,x3)=a(x12+x22+x32)+4x1x2+4x1x3+4x2x3,经正交换x=Py可化成标准形f=6y12,则a=________。
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出。求向量组α1,α2,α3,α4的一个极大线性无关组,并将其余向量用该极大线性无关组
已知齐次方程组为其中≠0。讨论当a1,a2,…,an和b满足何种关系时:方程组仅有零解。
[20l0年]设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=1/3.证明:存在ξ∈(0,1/2),η∈(1/2,1),使得f′(ξ)+f′(η)=ξ2+η2.
[2006年]设数列{xn}满足0<x1<π,xn-1=sinxn(n=1,2,…).证明xn存在,并求该极限.
[2002年]设y=y(x)是二阶常系数线性微分方程y"+py'+qy=e3x满足初始条件.y(0)=y'(0)=0的特解,则当x→0时,函数[ln(1+x2)]/y(x)的极限().
随机试题
被誉为“短篇小说之王”的作家是()。
Ifnewspaperconsumersareconcernedaboutmorethan(i)________andprefertoreadnewsthatisconsistentwiththeirbeliefs,t
能治疗支原体肺炎的药物是:
患儿,2岁,精神差,偏食,面色苍白,毛发枯黄,注意力不集中,不爱活动,平时生活中喜吃指甲,查体:肝、脾、淋巴结常轻度肿大。此患儿最可能的诊断是
安全检查表的编制一般采用经验法和()。
下列关于银行存款余额调节表的表述中,正确的是()。
下列关于税务师事务所对业务的承接和保持的相关规定的表述中,不正确的有()。
把杜甫的《漫成一首》中的第一句“江月去人只数尺”扩展成内容丰富的一段文字,按“月形"“月色”“月光”“月神”进行扩展,不少于100字。
以下过程定义中正确的过程首行是
Inordertothinkaboutthepossibilityofascienceofvirtues,wemust,ofcourse,reflectonwhatwemeanbyvirtue.Inthes
最新回复
(
0
)