首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0. (I)求f(x)在区间[0,3π/2]上的平均值; (Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0. (I)求f(x)在区间[0,3π/2]上的平均值; (Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
admin
2022-09-22
107
问题
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数
的一个原函数,f(0)=0.
(I)求f(x)在区间[0,3π/2]上的平均值;
(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
选项
答案
(I)由题设可得 ∫
0
x
f’(x)dx=f(x)-f(0)=∫
0
x
[*]dt,x∈(0,3π/2). 又f(0)=0,因此f(x)=∫
0
x
[*]dt,则在区间[0,3π/2]上,f(x)的平均值为 [*] (Ⅱ)由题设可知f’(x)=[*],x∈(0,3π/2). 当0<x<π/2时,f’(x)<0.可知在(0,π/2)上,f(x)单调递减. 而f(0)=0,知x∈(0,π/2]时,f(x)<0,因此f(x)在(0,π/2]内无零点,且f(π/2)<0. 当π/2<x<3π/2时,f’(x)>0,可知在x∈(π/2,3π/2)时,f(x)单调递增. 由于f(x)在闭区间[0,3π/2]上连续,再结合(I)中结果,由积分中值定理可知,至少存在一点x
0
∈[0,3π/2],使得f(x
0
)=1/3π>0. 而当x∈(0,π/2]时,f(x)<0,可知x
0
∈(π/2,3π/2]. 当x∈(π/2,3π/2)时,f(x)单调递增,可知x
0
唯一. 由f(π/2)<0,f(x
0
)>0,f(x)在(π/2,3π/2)上单调递增,结合连续函数的介值定理,可知存在唯一零点ξ∈(π2/,x
0
)[*](π/2,3π/2),使得f(ξ)=0. 综上所述,f(x)在区间(0,3π/2)内存在唯一零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/NPf4777K
0
考研数学二
相关试题推荐
以y=C1ex+ex(C2cosx+C3sinx)为特解的三阶常系数齐次线性微分方程为_______
设A是秩为3的5×4矩阵,α1,α2,α3是非齐次线性方程组Ax=b的三个不同的解,如果α1+α2+2α3=(2,0,0,0)T,3α1+α2=(2,4,6,8)T,则方程组AX=b的通解是________。
设A为2阶矩阵,α1,α2为线性无关的2维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
求不定积分
求极限:
计算下列积分:
求极限:
设二次型f(χ1,χ2,χ3)=XTAX,tr(A)=1,又B=且AB=O.(1)求正交矩阵Q,使得在正交变换X=QY,下二次型化为标准形.(2)求矩阵A.
设y=y(x)是微分方程y"+(x-1)y’+x2y=ex满足初始条件y(0)=0,y’(0)=1的解,则为().
求微分方程y"+4y’一5y=(3x一1)ex满足初始条件y(0)=0,y’(0)=1的特解.
随机试题
英文缩写ROM的中文译名是
周某于1999年至2001年间,先后盗得款物2万多元。在“严打”期间,周某一直潜逃在外。后来,周某被其父亲找回。在其父母的劝说下前往公安机关自首,途中恰遇两名熟悉本案的公安人员,当即上前将周某抓获。周某在被审判时,提供了重要线索,让司法机关侦破了张某的抢劫
按照有关规定,某炼钢厂的()必须进行安全生产培训,经培训单位考核合格并取得安全培训合格证后方可任职上岗。
保证收益理财产品(计划)的销售起点金额,应在5万元人民币以上。()
简述心理辅导的原则。
Mysistersaidshewouldtrytospeak______Englisheveryday.
讯问的时候,侦查人员不得少于二人,侦查人员人手不足时,可以由一名侦查人员先行讯问。()
下列情形中,构成徇私枉法罪的是()
邓小平在南方谈话中阐述了一系列重要思想,其中有关于
现代社会无论价值观的持有还是生活方式的选择都充满了矛盾。而最让现代人感到尴尬的是,面对重重矛盾,许多时候你却别无选择。匆忙与休闲是截然不同的两种生活方式。但在现实生活中,人们却在这两种生活方式间频繁穿梭,有时也说不清自己到底是“休闲着”还是“匆忙着”。譬如
最新回复
(
0
)