首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0. (I)求f(x)在区间[0,3π/2]上的平均值; (Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,f(0)=0. (I)求f(x)在区间[0,3π/2]上的平均值; (Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
admin
2022-09-22
71
问题
已知函数f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数
的一个原函数,f(0)=0.
(I)求f(x)在区间[0,3π/2]上的平均值;
(Ⅱ)证明f(x)在区间(0,3π/2)内存在唯一零点.
选项
答案
(I)由题设可得 ∫
0
x
f’(x)dx=f(x)-f(0)=∫
0
x
[*]dt,x∈(0,3π/2). 又f(0)=0,因此f(x)=∫
0
x
[*]dt,则在区间[0,3π/2]上,f(x)的平均值为 [*] (Ⅱ)由题设可知f’(x)=[*],x∈(0,3π/2). 当0<x<π/2时,f’(x)<0.可知在(0,π/2)上,f(x)单调递减. 而f(0)=0,知x∈(0,π/2]时,f(x)<0,因此f(x)在(0,π/2]内无零点,且f(π/2)<0. 当π/2<x<3π/2时,f’(x)>0,可知在x∈(π/2,3π/2)时,f(x)单调递增. 由于f(x)在闭区间[0,3π/2]上连续,再结合(I)中结果,由积分中值定理可知,至少存在一点x
0
∈[0,3π/2],使得f(x
0
)=1/3π>0. 而当x∈(0,π/2]时,f(x)<0,可知x
0
∈(π/2,3π/2]. 当x∈(π/2,3π/2)时,f(x)单调递增,可知x
0
唯一. 由f(π/2)<0,f(x
0
)>0,f(x)在(π/2,3π/2)上单调递增,结合连续函数的介值定理,可知存在唯一零点ξ∈(π2/,x
0
)[*](π/2,3π/2),使得f(ξ)=0. 综上所述,f(x)在区间(0,3π/2)内存在唯一零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/NPf4777K
0
考研数学二
相关试题推荐
曲线,上对应点t=2处的切线方程为_______.
设n阶矩阵则|A|=_______.
交换二次积分次序:
设I1=(χ4+y4)dσ,I2=(χ4+y4)dσ,I3=2χ2y2dσ则这三个积分的大小顺序是________<________<________.
设z=f(χ,y)二阶连续可导,且=χ+1,f′χ(χ,0)=2χ,f(0,y)=sin2y,则f(χ,y)=_______.
任意一个三维向量都可以由α1=(1,0,1)T,α2=(1,一2,3)T,α3=(a,1,2)T线性表示,则a的取值范围为__________。
微分方程xdy—ydx=ydy的通解是____________.
设函数f(x)在(一∞,+∞)内单调有界,(xn}为数列,下列命题正确的是
已知函数y=y(x)在任意点x处的增量,其中α是△x(Ax→0)的高阶无穷小,且y(0)=π,则y(1)等于
随机试题
竹笋在我国主要产于________。
现代企业的会计制度具有国际通用规范的性质。()
A、 B、 C、 D、 C
关于抗疟药下列说法正确的是
以下对有关指标说法正确的是()。
台灯作为一个实体可由市场决定其生产量,这种需求量是()。
《尚书》是中国文学史上第一部记叙文和议论文。()
2019年9月23日,“()——庆祝中华人民共和国成立70周年大型成就展”开幕式在北京展览馆举行。中共中央政治局常委、国务院总理李克强出席开幕式并讲话。
Evidenceofthebenefitsthatvolunteeringcanbringolderpeoplecontinuestorollin."Volunteershaveimprovedphysicalands
Whenyourunyourhandsthroughyourlover’shair,you’reprobablynotthinkingaboutyourplaceinthesocialhierarchy.Givey
最新回复
(
0
)