首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
admin
2020-03-16
103
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2.由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量. 令A的属于特征值λ
1
=λ
2
=1的特征向量为α=[*],因为A为实对称矩阵,所以有α
1
T
α=0,即x
1
+x
3
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 α
2
=[*],α
3
=[*] 令P=(α
2
,α
3
,α
1
)=[*],由P
-1
AP=[*],得 A=P[*]P
-1
=[*],所求的二次型为 f=X
T
AX=[*]x
1
2
+x
2
2
-[*]x
3
2
+3x
1
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QdA4777K
0
考研数学二
相关试题推荐
是否存在平面二次曲线y=ax2+bx+c,其图形经过以下各点:(0,1),(—2,2),(1,3),(2,1)。
设η1,η2,η3,η4是齐次线性方程组Ax=0的基础解系,则Ax=0的基础解系还可以是()
[2006年]设函数y=y(x)由方程y=1一xey确定,则=__________.
[20l8年]将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[20l5年]已知函数f(x)在区间[a,+∞]上具有2阶导数,f(a)=0,f′(x)>0,f″(0)>0.设b>a,曲线y=f(x)在点(b,f(b))处的切线与x轴的交点是(x0,0),证明a<x0<b.
(2004年试题,三(8))设有齐次线性方程组试问a取何值时,该方程组有非零解,并求出其通解
设A=E为3阶单位矩阵.(Ⅰ)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
求二重积分(x一y)dxdy,其中D={(x,y)|(x一1)2+(y一1)2≤2,y≥x}。
设f(x)在区间[a,b]上连续,在(a,b)内可导,且f(a)=f(b),f(x)不恒为常数,证明:在(a,b)内至少存在一点ξ,使得f’(ξ)>0.
设F(x)是f(x)的原函数,F(1)=若当x>0时,有f(x)F(x)=,试求f(x).
随机试题
某种电子元件的使用寿命X服从指数分布,如果它的年均寿命为100小时,现在某一线路由三个这种元件并联而成,求:(附:e-1≈0.37,e-1.5≈0.22)这个线路能正常工作100小时以上的概率。
糖尿病的基础治疗包括
痰肿的临床特点是
产状要素可以用地质罗盘测得,测量结果150L60表示()。
证券评级业务的评级对象包括( )。
幼儿的行为表现和()具有重要的评价意义,教师应视之为重要的评价信息和改进工作的依据。
下列()情形,注册会计师可能不对应收账款实施函证。
下列表述正确的有()。
WhomightMr.Leebe?
唐代是中国古典诗歌的鼎盛时期,在不到300年的时间里,产生了许多著名的诗人和诗作。时至今日,有超过5万首唐诗和2000多位唐代诗人为人们所熟知。其中,唐代最著名的诗人是李白和杜甫。李白生性无拘无束,才华横溢,他创作了大量赞美祖国大好河山的诗篇。杜甫年轻时坎
最新回复
(
0
)