首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
admin
2020-03-16
58
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2.由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量. 令A的属于特征值λ
1
=λ
2
=1的特征向量为α=[*],因为A为实对称矩阵,所以有α
1
T
α=0,即x
1
+x
3
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 α
2
=[*],α
3
=[*] 令P=(α
2
,α
3
,α
1
)=[*],由P
-1
AP=[*],得 A=P[*]P
-1
=[*],所求的二次型为 f=X
T
AX=[*]x
1
2
+x
2
2
-[*]x
3
2
+3x
1
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QdA4777K
0
考研数学二
相关试题推荐
当x→1时,函数的极限().
[2012年]曲线y=x2+x(x<0)上曲率为√2/2的点的坐标是_________.
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:0≤∫axg(t)dt≤x一a,x∈[a,b];
(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3.(Ⅰ)证明α1,α2,α3线性无关;(Ⅱ)令P=[α1,α2,α3],求P-1AP.
已知n阶矩阵A满足A3=E.(1)证明A2-2A-3E可逆.(2)证明A2+A+2E可逆.
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求a,b的值;
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记p=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;
将f(x,y)dxdy化为累次积分,其中D为x2+y2≤2ax与x2+y2≤2ay的公共部分(a>0).
当a,b取何值时,方程组无解、有唯一解、有无数个解?在有无数个解时求其通解.
[2006年]设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解.(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
随机试题
管道内减阻涂层修补后的检验项目包括哪些?
肝郁发热日久,热邪伤阴,治宜滋养肝肾,疏肝清热,宜选用何方为先
下列疾病中具有尼氏征阳性的是
根据《中华人民共和国草原法》禁止开垦草原的有关规定,已造成()的已垦草原,应当限期治理。
旅行社责任险期为1年,期满应再续1年。()
2012年我国夏粮生产获得了较好收成。全国夏粮总产量达到12995万吨,比2011年增加356万吨,增长2.8%,超过1997年12768万吨的历史最高水平,比10年前增长31.6%。2012年,河北、山西、江苏、安徽、山东、河南、湖北、四川、陕西、甘肃、
我国宪法规定:“中华人民共和国公民有宗教信仰自由。”该规定属于法律规范中的()。(2010年单选4)
当代资本主义发生的变化从根本上说()
A、 B、 C、 D、 D
Bobassuredhisbossthathewould______allhisenergiesindoingthisnewjob.
最新回复
(
0
)