首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
三元二次型f=XTAX经过正交变换化为标准形f=y12+y22-2y32,且A*+2E的非零特征值对应的特征向量为α1=,求此二次型.
admin
2020-03-16
60
问题
三元二次型f=X
T
AX经过正交变换化为标准形f=y
1
2
+y
2
2
-2y
3
2
,且A
*
+2E的非零特征值对应的特征向量为α
1
=
,求此二次型.
选项
答案
因为f=X
T
AX经过正交变换后的标准形为f=y
1
2
+y
2
2
-2y
3
2
,所以矩阵A的特征值为λ
1
=λ
2
=1,λ
3
=-2.由|A|=λ
1
λ
2
λ
3
=-2得A
*
的特征值为μ
1
=μ
2
=-2,μ
3
=1,从而A
*
+2E的特征值为0,0,3,即α
1
为A
*
+2E的属于特征值3的特征向量,故也为A的属于特征值λ
3
=-2的特征向量. 令A的属于特征值λ
1
=λ
2
=1的特征向量为α=[*],因为A为实对称矩阵,所以有α
1
T
α=0,即x
1
+x
3
=0故矩阵A的属于λ
1
=λ
2
=1的特征向量为 α
2
=[*],α
3
=[*] 令P=(α
2
,α
3
,α
1
)=[*],由P
-1
AP=[*],得 A=P[*]P
-1
=[*],所求的二次型为 f=X
T
AX=[*]x
1
2
+x
2
2
-[*]x
3
2
+3x
1
x
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/QdA4777K
0
考研数学二
相关试题推荐
已知线性方程组当a,b,c满足什么关系时,方程组有非零解?并求通解。
设齐次线性方程组的系数矩阵为A=,设Mi(i=1,2,…,n)是A中划去第i列所得到的n—1阶子式。证明:(M1,—M2,…,(—1)n—1Mn)是方程组的一个解向量。
设α1,α2,α3,α4是4维非零列向量组,A=(α1,α2,α3,α4),A*是A的伴随矩阵,已知方程组Ax=0的基础解系为(1,0,2,0)T,则方程组A*x=0的基础解系为()
[2012年](Ⅰ)证明方程xn+xn-1+…+x=l(n>1的整数),在区间(1/2,1)内有且仅有一个实根;(Ⅱ)记(I)中的实根为xn,证明xn存在,并求此极限.
[2003年]设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y'≠0,x=x(y)是y=y(x)的反函数.试将x=x(y)所满足的微分方程+(y+sinx)=0变换为y=y(x)满足的微分方程.
(2002年)已知矩阵A=[α1α2α3α4],α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Aχ=β的通解.
设。已知线性方程组Ax=b存在两个不同的解。求λ,a;
设随机变量X和Y相互独立且都服从正态分布N(0,9),而X1,…,X9与Y1一,Y9分别是来自总体X和Y的两个简单随机样本,判断统计量T=所服从的分布.
随机试题
某商业建筑,东西长100m,南北宽60m,建筑高度26m,室外消火栓设计流量为40L/s,南侧布置消防扑救面。沿该建筑南侧消防扑救面设置的室外消火栓数量,不宜少于()个。
患者因受精神刺激突发二便失禁,骨酸痿厥或遗精。其病机是患者因受精神刺激而气逆喘息,面红口赤,呕血,昏厥卒倒。其病机是
下列有抗原性的纤维蛋白溶解药是
外加剂储存时应当至少离地的高度和离墙的距离分别是()。
下列各项中,可能与“应付职工薪酬”科目贷方对应的有()。
沂源:苹果:水果
某种商品有小箱和大箱两种包装,一大箱这种商品有400件,张和王同时开始制造这种商品,制造一小箱和一大箱这种商品后,张比王多做50件。如果王此时的效率提高100%,并与张再共同制造一大箱这种商品,则王制造的总件数比张多50件。问一小箱这种商品有多少件:
下列成语及其出处的对应关系错误的是()。
Manhasbeenstoringupusefulknowledgeabouthimselfandtheuniverseattheratewhichhasbeenspiralingupwardfor10,000y
【B1】【B8】
最新回复
(
0
)