首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.P为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大无关组.
设α1=(1,1,1,3)T,α2=(-1,-3,5,1)T,α3=(3,2,-1,P+2)T,α4=(-2,-6,10,p)T.P为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大无关组.
admin
2016-10-21
76
问题
设α
1
=(1,1,1,3)
T
,α
2
=(-1,-3,5,1)
T
,α
3
=(3,2,-1,P+2)
T
,α
4
=(-2,-6,10,p)
T
.P为什么数时,α
1
,α
2
,α
3
,α
4
线性相关?此时求r(α
1
,α
2
,α
3
,α
4
)和写出一个最大无关组.
选项
答案
计算r(α
1
,α
2
,α
3
,α
4
) (α
1
,α
2
,α
3
,α
4
)=[*] 则当p=2时,r(α
1
,α
2
,α
3
,α
4
)=3,α
1
,α
2
,α
3
,α
4
线性相关,α
1
,α
2
,α
3
是一个最大无关组. 当p≠2时,r(α
1
,α
2
,α
3
,α
4
)=4,α
1
,α
2
,α
3
,α
4
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/NTt4777K
0
考研数学二
相关试题推荐
已知抛物线y=px2+qx(其中p0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.求出此最大值。
求的值域,并求它的反函数。
设f(x)=(1-e1/(x-1))/(1+e1/(x-1))arctan1/x,求f(x)的间断点,并判断其类型.
A、x=0为f(x)的极大值点B、x=0为f(x)的极小值点C、(0,f(0))为y=f(x)的拐点D、x=0不是f(x)的极值点,(0,f(0))也不是y=f(x)的拐点.A
已知y1=xex+e2x,y2=xex+e-x,y3=xex+e2x-e-x是某二阶线性非齐次微分方程的三个解,求此微分方程。
设y=y(x)是二阶常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限是________。
设三阶实对称矩阵A的特征值是1,2,3;矩阵A的属于特征值1,2的特征向量分别是α1=(-1,-1,1)T,α2=(1,-2,-1)T.求A的属于特征值3的特征向量.
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
(2010年试题,8)设A为四阶实对称矩阵,且A2+A=0,若A的秩为3,则A相似于().
某公司可通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费z,(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x2+32x2—8x1x2一2x12一10x22.(1)在广告
随机试题
提倡“义理、考据、辞章”的作家是【】
A.清化肃肺B.补肾纳气C.温化宣肺D.补肺固卫哮病发作期属寒哮的治法是
麦芽与山楂的共同主治证是()
一名50岁体质较差的女性患者,十二指肠溃疡穿孔20小时,入院施行穿孔修补术后6天体温38℃,腹痛、腹胀,大便次数增多,有黏液,里急后重,诊断为盆腔脓肿。以下治疗措施哪项是错误的
在稳定类基层材料拌合时,应重点检查结合料的剂量、最佳含水量的控制以及拌合方法及均匀性等。()
依据《劳动合同法》,劳动者的权利有()。
( )是对在中华人民共和国境内车辆、船舶(简称车船)的所有人或者管理人所征收的一种税。
发行人在境内发行股票或者可转换公司债券、证券公司在境内承销证券以及投资者认购境内发行的证券,适用()。
下列关于上海行政、司法概况的说法中,正确的有()。
Thethiefwasfinallycapturedtwomilesawayfromthevillage.
最新回复
(
0
)