首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2011年] 设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( ).
[2011年] 设A=[α1,α2,α3,α4]是四阶矩阵,A*为A的伴随矩阵,若[1,0,1,0]T是方程组AX=0的一个基础解系,则A*X=0的基础解系可为( ).
admin
2019-05-10
71
问题
[2011年] 设A=[α
1
,α
2
,α
3
,α
4
]是四阶矩阵,A
*
为A的伴随矩阵,若[1,0,1,0]
T
是方程组AX=0的一个基础解系,则A
*
X=0的基础解系可为( ).
选项
A、α
1
,α
3
B、α
1
,α
2
C、α
1
,α
2
,α
3
D、α
2
,α
3
,α
4
答案
D
解析
先求A
*
X=0的一个基础解系所含解向量的个数.再由A
*
A=∣A∣E=0E=0得到A的列向量为A
*
X=0的解,且A的列向量组中含有A
*
X=0的基础解系,最后利用AX=0的基础解系求得A的列向量之间的线性关系,从而确定A
*
X=0的基础解系.
因AX=0的基础解系只含一个解向量[1,0,1,0]
T
,故n一秩(A)=4一秩(A)=1,即秩(A)=3.因而秩(A
*
)=1.于是A
*
X=0的一个基础解系必含n一秩(A
*
)=4一l=3个解向量,这就排除了(A),(B)选项.
因秩(A)=3,故∣A∣=0,所以A
*
A=∣A∣E=O.又因秩(A)=3,故A的列向量组中含有A
*
X=0的基础解系.
又因[1,0,1,0]
T
为AX=[α
1
,α
2
,α
3
,α
4
]X=0的解向量,故[α
1
,α
2
,α
3
,α
4
][1,0,1,0]
T
=α
1
+α
3
=0,即α
1
与α
3
线性相关,从而排除(C).仅(D)入选.
转载请注明原文地址:https://kaotiyun.com/show/NVV4777K
0
考研数学二
相关试题推荐
计算定积分
计算定积分
设f(χ)在[0,1]上可导,且|f′(χ)|<M,证明:
设f(χ),g(χ)为[a,b]上连续的增函数(0<a<b),证明:∫abf(χ)dχ∫abg(χ)dχ≤(b-a)∫abf(χ)g(χ)dχ.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
设α1,α2,…,αn(n≥2)线性无关,证明:当且仅当n为奇数时,α1+α2,α2+α3,…,αn+α1线性无关.
确定常数a,b,c,使得=c.
求微分方程χy′+(1-χ)y=e2χ(χ>0)的满足y(χ)=1的特解.
在某池塘内养鱼,该池塘最多能养鱼1000条.在时刻t,鱼数y是时间t的函数y=y(t),其变化率与鱼数y及1000-y成正比.已知在池塘内放养鱼100条,3个月后池塘内有鱼250条,求放养t月后池塘内鱼数y(t)的公式.
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.求f(x);
随机试题
GB/T9695.15-2008中,肉制品的直接干燥法水分测定至少取有代表性的试样()g于绞肉机中至少绞两次。
余留牙的保留牙槽骨吸收的程度下列哪项是错误的()
颜面部疔疮治宜()
夜间晴天,地面风速1.5m/s,大气稳定度类型不可能为( )。
李某的施工队没有资质,挂靠丙公司承包工程,对此,下列选项中符合《建筑法》有关资质管理规定的观点是()。
用人单位未与劳动者签订劳动合同,可依据()等凭证认定双方存在劳动关系。
设f(x)=则f(x)在点x=0处().
Itwasunfortunatethat,aftersotrouble-freeanarrival,heshouldstumbleinthedarkashewasrisingandseverelytwisthis
Youngpeoplearefacinganuncertainfuture.Asthe21stcenturydawned,theywerepromisedawealthofprospectsunless【M1】____
NoticeDearSirs,WeoweyournameandaddresstotheCommercialCounselor’sOfficeoftheSwedishEmbassyinBeijingwhohas
最新回复
(
0
)