首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵 若向量都是方程组Ax=0的解,试证r(A)=2;
设矩阵 若向量都是方程组Ax=0的解,试证r(A)=2;
admin
2021-02-25
102
问题
设矩阵
若向量
都是方程组Ax=0的解,试证r(A)=2;
选项
答案
由于在矩阵A中存在二阶的子式[*],所以,r(A)≥2,又因为α
1
,α
2
都是方程组Ax=0的解,且线性无关,所以4-r(A)>≥2,即r(A)≤2,故r(A)=2.
解析
本题是线性方程组的综合题,首先根据矩阵秩的概念和方程组未知数的个数-系数矩阵的秩r(A)=齐次线性方程组的基础解系解向量的个数证明r(A)=2,再将矩阵方程转化为非齐次线性方程组的求解问题求所有矩阵B.
转载请注明原文地址:https://kaotiyun.com/show/Na84777K
0
考研数学二
相关试题推荐
已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A—B2是对称矩阵。
A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,试证明:(1)aij=Aij←→ATA=E且|A|=1;(2)aij=一Aij←→ATA=E且|A|=一1.
设A=(α1,α2,α3,α4,α5),其中α1,α3,α5线性无关,且α2=3α1-α3-α5,α4=2α1+α3+6α5,求方程组AX=0的通解.
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
已知三角形周长为2p,求出这样一个三角形,使它绕自己的一边旋转时体积最大.
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(1)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表不;(2)设α1=,α2=,β1=,β2=,求出可由两组向量同时线性表示的向量.
若矩阵相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
随机试题
简述幼儿无意注意的发展。
正在处理的单元格称为活动单元格。()
应用异烟肼作为预防结核杆菌感染的预防性服药指征包括()。
根据国际公约和国际习惯,对一国领土主权的限制包括以下哪些方面?
不同时期由于财政支出作用的不同,财政支出数量也会发生变化,提出此观点的是()。
委托收款是收款人委托银行向付款人收取款项的一种结算方式,只能在同城使用。()
能够体现传授知识与思想品德教育相统一规律的教学原则是()。
未来消费金融领域空间巨大,而且随着市场逐渐完善成熟,银行也会更加注重产品服务优化和个性化营销。因此,各银行不约而同地将信用卡业务作为了未来的战略重心。以下各项如果为真,最能加强上述结论的是:
公安机关刑事强制工作的内容主要有()。
如图所示是网络地址转换NAT的一个示例,图中①~④略去部分信息,其中③应为()。
最新回复
(
0
)