首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
admin
2019-07-28
112
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且
试证:(Ⅰ)存在
,使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
选项
答案
(Ⅰ)只需作出辅助函数φ(x)=f(x)一x,利用介值定理证之; (Ⅱ)对于中值等式f′(ξ)一λf(ξ)=0,常作辅助函数F(x)一f(x)e
-λx
证之.将待证等式右边的1看成ξ′,则待证等式可化为 f′(ξ)一ξ′一λ[f(ξ)一ξ]=[f(ξ)一ξ]′一λ[f(ξ)一ξ]. 于是易想到作辅助函数 F(x)=e
-λx
[f(x)一x], 利用罗尔定理证之. 证 (Ⅰ)令φ(x)=f(x)一x.则φ(x)在[0,1]上连续,又 [*] 故由介值定理知,存在[*],使得 φ(η)一f(η)一η=0, 即f(η)=η. (Ⅱ)设 F(x)=e
-λx
φ(x)=e
-λx
[f(x)一x], 则F(x)在[0,η]上连续,在(0,η)内可导,且 F(0)=0,F(η)=e
-λη
φ(η)=0, 即F(x)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η),使得F′(ξ)=0,即 e
-λξ
{f′(ξ)一λ[f(ξ)一ξ]一1)=0, 从而 f′(ξ)一λ[f(ξ)一ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/xXN4777K
0
考研数学二
相关试题推荐
关于函数y=f(x)在点x0的以下结论正确的是()
设A为m×竹阶矩阵,则方程组AX=b有唯一解的充分必要条件是().
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=1,y’(0)=2的特解,则∫01y(x)dx=_________.
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:(1)AB=BA:(2)存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
用变量代换x=lnx将方程+e2xy=0化为y关于t的方程,并求原方程的通解.
设函数y=f(x)二阶可导,f’(x)≠0,且与x=φ(y)互为反函数.求φ’’(y).
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf’(z)=f(x)+ax2,又由曲线y=f(x)与直线x=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
(14年)设函数f(u)具有2阶连续导数,z=f(excosy)满足若f(0)=0,f’(0)=0,求f(u)的表达式.
设A,B为同阶方阵。举一个二阶方阵的例子说明第一小题的逆命题不成立;
随机试题
激励机制的核心是
A.支气管腺体肥大、增生,黏膜上皮杯状细胞增多B.肺泡上皮增生,细胞内包涵体形成C.细支气管及周围肺泡化脓性炎D.肺组织高度纤维化病毒性肺炎的病理特点是
甲亢患者所具有的特征性神经系统症状是
丹毒的致病菌为
选用乙醇作药材浸提溶剂时,下列表述中错误的是
低塑性混凝土宜在浇筑完毕后立即进行()养护。
以下()是伪传递规则。
Peopleinnately______forsuperiorityovertheirpeersalthoughitsometimestakestheformofanexaggeratedlustforpower.
Inordertoworkheretheforeignerneedsaworkpermit,whichmustbe【C1】______forbyhisprospectiveemployer.Theproblemher
LinguisticFolliesAInrecentyearsBrusselshasbeenafineplacetoobservetheirresistibleriseofEnglishasEurope’slin
最新回复
(
0
)