设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.

admin2019-07-28  29

问题 设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且
       
试证:(Ⅰ)存在,使f(η)=η;
     (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.

选项

答案(Ⅰ)只需作出辅助函数φ(x)=f(x)一x,利用介值定理证之; (Ⅱ)对于中值等式f′(ξ)一λf(ξ)=0,常作辅助函数F(x)一f(x)e-λx证之.将待证等式右边的1看成ξ′,则待证等式可化为 f′(ξ)一ξ′一λ[f(ξ)一ξ]=[f(ξ)一ξ]′一λ[f(ξ)一ξ]. 于是易想到作辅助函数 F(x)=e-λx[f(x)一x], 利用罗尔定理证之. 证 (Ⅰ)令φ(x)=f(x)一x.则φ(x)在[0,1]上连续,又 [*] 故由介值定理知,存在[*],使得 φ(η)一f(η)一η=0, 即f(η)=η. (Ⅱ)设 F(x)=e-λxφ(x)=e-λx[f(x)一x], 则F(x)在[0,η]上连续,在(0,η)内可导,且 F(0)=0,F(η)=e-ληφ(η)=0, 即F(x)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η),使得F′(ξ)=0,即 e-λξ{f′(ξ)一λ[f(ξ)一ξ]一1)=0, 从而 f′(ξ)一λ[f(ξ)一ξ]=1.

解析
转载请注明原文地址:https://kaotiyun.com/show/xXN4777K
0

最新回复(0)