首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且 试证:(Ⅰ)存在,使f(η)=η; (Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
admin
2019-07-28
105
问题
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且
试证:(Ⅰ)存在
,使f(η)=η;
(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
选项
答案
(Ⅰ)只需作出辅助函数φ(x)=f(x)一x,利用介值定理证之; (Ⅱ)对于中值等式f′(ξ)一λf(ξ)=0,常作辅助函数F(x)一f(x)e
-λx
证之.将待证等式右边的1看成ξ′,则待证等式可化为 f′(ξ)一ξ′一λ[f(ξ)一ξ]=[f(ξ)一ξ]′一λ[f(ξ)一ξ]. 于是易想到作辅助函数 F(x)=e
-λx
[f(x)一x], 利用罗尔定理证之. 证 (Ⅰ)令φ(x)=f(x)一x.则φ(x)在[0,1]上连续,又 [*] 故由介值定理知,存在[*],使得 φ(η)一f(η)一η=0, 即f(η)=η. (Ⅱ)设 F(x)=e
-λx
φ(x)=e
-λx
[f(x)一x], 则F(x)在[0,η]上连续,在(0,η)内可导,且 F(0)=0,F(η)=e
-λη
φ(η)=0, 即F(x)在[0,η]上满足罗尔定理的条件,故存在ξ∈(0,η),使得F′(ξ)=0,即 e
-λξ
{f′(ξ)一λ[f(ξ)一ξ]一1)=0, 从而 f′(ξ)一λ[f(ξ)一ξ]=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/xXN4777K
0
考研数学二
相关试题推荐
设f(χ)=,求f(n)(χ).
设f(χ)在(-∞,+∞)上有定义,χ0≠0为函数f(χ)的极大值点,则().
设A是三阶实对称矩阵,r(A)=1,A2-3A=O,设(1,1,-1)T为A的非零特征值对应的特征向量.(1)求A的特征值;(2)求矩阵A.
设α1=,α2=,α3=,α4=,则α1,α2,α3,α4的一个极大线性无关组为______,其余的向量用极大线性无关组表示为________.
设y=y(x)满足△y=△x+o(△x),且有y(1)=1,则∫02y(x)dx=________.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定甜为x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1,求
设K,L,δ为正的常数,则[δK-x+(1-δ)L-x=________.
计算下列二重积分:(Ⅰ)xydσ,其中D是由曲线r=sin2θ(0≤θ≤)围成的区域;(Ⅱ)xydσ,其中D是由曲线y=,x2+(y-1)2=1与y轴围成的在右上方的部分.
设f(x)在x=0的某邻域内连续,且当x→0时,f(x)与xm为同阶无穷小.又设当x→0时,F(x)=∫0xnf(t)dt与xk为同阶无穷小,其中m与n为正整数.则k=()
已知一个长方形的长l以2cm/s的速率增加,宽加以3cm/s的速率增加。则当l=12cm,w=5cm时,它的对角线增加速率为______。
随机试题
HowtoDealWithPressure?Withthecurrentmoodofglobal【C1】______(certain)andan【C2】______(economy)recession,people
L1型急性淋巴细胞白血病,其白血病细胞特点是白血病细胞
机体抵御病毒再感染的主要特异性效应分子是
与一般经济合同相比,保险合同的特殊性在于()。
根据下面案例,回答下列问题:邓先生计划出国攻读博士学位,期间3年预计费用为60万元,毕业后可工作28年。假定出国念博士可达到13%的报酬率,在考虑货币时间价值的情况下,邓先生要收回成本,学成回国后年薪需达到( )万元。
甲公司按单项存货计提存货跌价准备。
已知函数f(χ)=(a2-6a-7)2-χ一在其定义域上是单调递增函数,则a的取值范围为().
影响个体身心发展的因素,概括起来有()。
企业战略数据模型可分为两种类型:(35)描述日常事务处理中的数据及其关系;(36)描述企业管理决策者所需信息及其关系。35
Whomcanyoutrustthesedays?ItisaquestionposedbyDavidHalpernofCambridgeUniversity,andtheresearchersattheDowni
最新回复
(
0
)