首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵B=P-1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
设矩阵B=P-1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为3阶单位矩阵.
admin
2016-05-09
30
问题
设矩阵
B=P
-1
A
*
P,求B+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为3阶单位矩阵.
选项
答案
设A的特征值为λ,对应特征向量为η,则有Aη=λη.由于|A|=7≠0,所以λ≠0 又因A
*
A=|A|E,故有A
*
=[*]η. 于是有 B(P
-1
η)=p
-1
A
*
P(P
-1
η)=[*](P
-1
η), (B+2E)P
-1
η=([*]+2)P
-1
η. 因此,[*]+2为B+2E的特征值,对应的特征向量为P
-1
η. 由于|λE-A|=[*]=(λ-1)
2
(λ-7), 故A的特征值为λ
1
=λ
2
=1,λ
3
=7. 当λ
1
=λ
2
=1时,对应线性无关的两个特征向量可取为[*] 当λ
3
=7时,对应的一个特征向量可取为η
3
= [*] 由[*] 因此,B+2E的三个特征值分别为9,9,3. 对应于特征值9的全部特征向量为 k
1
P
-1
η
1
+k
2
P
-1
η
2
=[*],其中k
1
,k
2
是不全为零的任意常数; 对应于特征值3的全部特征向量为 k
3
P
-1
η
3
=k
3
[*],其中k
3
是不为零的任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ngw4777K
0
考研数学一
相关试题推荐
设A是n阶反对称矩阵,(Ⅰ)证明:A可逆的必要条件是n为偶数;当n为奇数时,A*是对称矩阵;(Ⅱ)举一个4阶不可逆的反对称矩阵的例子;(Ⅲ)证明:如果λ是A的特征值,那么—λ也必是A的特征值.
A、 B、 C、 D、 C
设φ连续,且x2+y2+z2=
设A=,为A中aij(i,j=1,2,3)的代数余子式,二次型的矩阵为B求正交变换x=Qy将二次型f(x1,x2,x3)化为标准形
设二次型f(x1,x2)=ax12+bx22+4x1x2经过正交变换x=Qy化为g(y1,y2)=2y12+2y1y2二次型f与g的矩阵分别为A与B求正交矩阵Q
设D是由曲线与直线y=-x所围成的区域,D1是D在第二象限的部分,则(xsiny+ycosx)dxdy=().
已知平面π:x-2y+z-3=0,直线L:,则π与L的夹角是________.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设A,B为同阶方阵,(I)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(I)的逆命题成立.
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)