首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2018-03-11
60
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ
1
∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
构造辅助函数 F(x)=f(x)一g(x), 由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,n)使得 [*] 若x
1
=x
2
,令c=x
1
,则F(c)=0。 若x
1
2,因 F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0, 从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 F′(ξ
1
)=F′(ξ
2
)=0。 再对F′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,存在ξ∈(ξ
1
,ξ
2
)c(a,b),有F"(ξ)=0,即 f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Nqr4777K
0
考研数学一
相关试题推荐
设二次方程x2一Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与Y的概率密度.
求微分方程的通解,并求满足y(1)=0的特解.
设函数u(x,y)具有连续的一阶导数,1为自点O(0,0)沿曲线γ=sinx至点A(π,0)的有向弧段,求下面曲线积分:∫l=(yu(x,y)+xyu’(x,y)+y+xsinx)dx+(xu(x,y)+xyu’y(x,y)+ey2一x)dy。
设有直线则过L1且与L2平行的平面方程为________。
设总体X与Y都服从标准正态分布N(0,1),X1,X2,…,Xn与Y1,Y2,…,Yn是分别来自总体X和Y的两个相互独立的简单随机样本,其样本均值与方差分别为,则
(2013年)已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的三个解,则该方程的通解为y=____________。
(2013年)设数列(an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2)。S(x)是幂级数的和函数。(I)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
(2004年)设z=z(x,y)是由x2一6xy+10y2一2yz—z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
[2018年]设F(x,y,z)=xyi—yzj+xzk,则rotF(1,1,0)=______.
随机试题
按照钢中碳含量分类,45钢属于()。
(2011年4月,2010年4月)各国的国际私法著作中,有称这个法律部门为“国际私法”的,有称其为“冲突法”的。大陆法系各国多称为_____。而立法上,更有直接称之为“涉外民事法律适用法”的。
________在新产品进入成熟期后期乃至进人衰退期才会采用。()
垂直传播的途径是
慢性活动性胃炎的治疗应特别注意采用
某公司沉箱预制场预制沉箱,每个沉箱混凝土为480m3,混凝土强度等级为C30,该预制场实际统计的混凝土σ=3.0MPa,经计算和试配,混凝土的配合比为1:2.5:3.5,用有效搅拌量为2.0m3的搅拌机搅拌混凝土,正常施工条件下(砂、石含水忽略不计)每罐混
黄老师在指导学生分析了起承转合的发展结构后,要求学生根据个人的生活体验运用起承转合的手法,自由写作音乐片段。上述教学行为体现了《义务教育音乐课程标准(2011年版)》中的哪个基本理念?()
Atthebeginningoftheprogram,thespeaker
A、Mountainclimbing.B、Hiking.C、Tailriding.D、Fishing.A
A、Byitslength.B、Byitstaste.C、Byitsshape.D、Byitscolor.D
最新回复
(
0
)