首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2018-03-11
59
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ
1
∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
构造辅助函数 F(x)=f(x)一g(x), 由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,n)使得 [*] 若x
1
=x
2
,令c=x
1
,则F(c)=0。 若x
1
2,因 F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0, 从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 F′(ξ
1
)=F′(ξ
2
)=0。 再对F′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,存在ξ∈(ξ
1
,ξ
2
)c(a,b),有F"(ξ)=0,即 f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Nqr4777K
0
考研数学一
相关试题推荐
设随机变量X与Y的分布律为且相关系数则(X,Y)的分布律为___________.
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
设γ1,γ2,…,γt和ηa,η2,…ηs分别是AX=0和BX=0的基础解系.证明:AX=0和BX=0有非零公共解的充要条件是γ1,γ2,…,γt,η1,η2,…,ηs线性相关.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
设A为n阶方阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,则|A*|等于()
(2007年)求函数f(x,y)=x2+2y2一x2y2在区域D={(x,y)|x2+y2≤4,y≥0}上的最大值和最小值.
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy’一4y=0,y(0)=0,y’(0)=1求y(x)的表达式.
(2000年)设级数收敛,则必收敛的级数为
随机试题
关于电复律术后的常规护理,不妥的是
女性,26岁。4周前感冒,1周后出现全身浮肿,尿少来诊。体格检查:血压140/90mmHg,大量腹水。化验:尿蛋白(++++),24小时尿蛋白8.5g,尿RBC5~8/HP,WBC4~6/HP。Hb100g/L,血Alb14g/L,血BUN1
呼吸衰竭
我国在1994年实行分税制改革的指导思想包括()。
只有正确处理好改革、发展和稳定之间的关系,才能总揽全局,保证经济和社会的顺利发展;处理不当,就会吃苦头,付出代价。这句话包含的哲理是()。
动机归因理论的提出者是________。
开启了中国近代教育的历史事件是
A、 B、 C、 D、 A
AtthePolishClubinGlasgow,ScotsandPolessocializeeasily.ManyofthecustomersinitsrestaurantareScottish,eagerto
Nutritionalstatementsthatdependonobservationoranecdoteshouldbegivenseriousconsideration,butconsiderationshouldal
最新回复
(
0
)