首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ1∈(a,b),使得f"(ξ)=g"(ξ)。
admin
2018-03-11
44
问题
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ
1
∈(a,b),使得f"(ξ)=g"(ξ)。
选项
答案
构造辅助函数 F(x)=f(x)一g(x), 由题设有F(a)=F(b)=0。又f(x),g(x)在(a,b)内具有相等的最大值,不妨设存在x
1
≤x
2
,x
1
,x
2
∈(a,n)使得 [*] 若x
1
=x
2
,令c=x
1
,则F(c)=0。 若x
1
2,因 F(x
1
)=f(x
1
)一g(x
1
)≥0,F(x
2
)=f(x
2
)一g(x
2
)≤0, 从而存在c∈[x
1
,x
2
][*](a,b),使F(c)=0。 在区间[a,c],[c,b]上分别利用罗尔定理知,存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得 F′(ξ
1
)=F′(ξ
2
)=0。 再对F′(x)在区间[ξ
1
,ξ
2
]上应用罗尔定理,存在ξ∈(ξ
1
,ξ
2
)c(a,b),有F"(ξ)=0,即 f"(ξ)=g"(ξ)。
解析
转载请注明原文地址:https://kaotiyun.com/show/Nqr4777K
0
考研数学一
相关试题推荐
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设A为n阶矩阵,λ1和λ2是A的两个不同的特征值x1,x2是分别属于λ1和λ2的特征向量.证明:x1+x2不是A的特征向量.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求在上述两个基下有相同坐标的向量.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=0.
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明f(x)在(0,+∞)内有且仅有一个零点.
(2002年)设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f′(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a,b的值。
(2013年)设奇函数f(x)在[一1,1]上具有2阶导数,且f(1)=1.证明:存在η∈(一1,1),使得f"(η)+f’(η)=1.
(2001年)设y=f(x)在(一1,1)内具有二阶连续导数且f"(x)≠0,试证:
(2000年)求
随机试题
肱骨髁上骨折常见的远期并发症是
隧道混凝土衬砌施工质量检测项目包括()。
根据《合同法》的规定,订立合同应遵循的基本原则是()。
《危险性较大的分部分项工程安全管理办法》规定,当开挖土方工程超过一定深度时,需要编制专项施工方案。该土方开挖工程的最小深度为()m。
在个人住房贷款中,保证担保的法律风险主要表现在()。
下列帝王陵位置的描述,正确的是()。
阅读文章,完成后面各题。苦瓜肖复兴原来我家有个小院,院里可以种些花草和蔬菜。这些活儿,都是母亲特别喜欢做的。
并提是古代汉语中常见的一种修辞方法,为了使句子紧凑,文辞简练,把本来应该用两个短语或者句子表达的内容,合并为一个短语或句子。合并时把相同的成份放在一起,使短语或句子的前后两部分有一种分别相承的关系。根据上述定义,下列没有使用并提修辞手法的是:
Ihearmanyparentscomplainingthattheirteenagechildrenarerebelling.Iwishitwereso.Atyourageyououghttobegrowin
FromOurDarkestDay,OurBrightestHopeThatawfulSeptembermorning,whenjet-linersrainedfromthesky,andtheworstan
最新回复
(
0
)