首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解线性方程组
解线性方程组
admin
2020-03-10
57
问题
解线性方程组
选项
答案
解一 用初等行变换将其增广矩阵[*]化为含最高阶单位矩阵的矩阵[*],即 [*] 显然秩[*]=秩(A)=3n=4,故一个基础解系只含n-秩(A)=4-3=1个解向量α.又因最高阶(三阶)单位矩阵位于A
1
中的第2,3,4列,故α的第2,3,4个分量分别为A
1
中其余的一列,即第1列的前3个分量反号,而α的第1个分量为一阶单位矩阵,即为1,因而 α=[1,-2,-1,-0]
T
=[1,-2,-1,0]
T
. 又由[*]的最后一列还得知一特解η
0
=[0,-2,3,6]
T
,于是原方程组的通解为 X=kα+η
0
(k为任意实数). 解二 用高斯消元法求解.对增广矩阵[*]作初等行变换,得到 [*] 已将[*]化成了行阶梯形,其与首非零元对应的未知量为x
1
,x
2
,x
4
,选它们为独立未知量,则x
3
就是自由未知量,于是易得到用自由未知量x
3
表示独立未知量的同解方程组,即 [*] 则方程组的通解用自由未知量可表示为 [*] 若令x
3
=k,也可得到方程组的参数形式的通解 x
1
=3-k, x
2
=-8+2k, x
3
=k, x
4
=6, 其中k为任意常数. 在此基础上也可将上述通解改写成用对应齐次方程组的基础解系和原方程组的一特解来表示,即 X=[x
1
,x
2
,x
3
,x
4
]
T
=[3-k,-8+2k,k,6]
T
=[3-k,-8+2k,0+k,6+0k]
T
=[3,-8,0,6]
T
+[-k,2k,k,0]
T
=[3,-8,0,6]
T
+k[-1,2,1,0]
T
. 可见,求出用自由未知量表示的通解①是求其他形式的通解的基础.
解析
转载请注明原文地址:https://kaotiyun.com/show/NrD4777K
0
考研数学三
相关试题推荐
已知函数y=f(x)对一切的x满足xf2(x)+3x[f'(x)]2=1一e-x,若f'(x0)=0(x0≠0),则()
设z=f(xy)+yφ(x+y),f,φ具有二阶连续导数,则=__________。
已知随机变量X~N(2,9),Y服从参数为0.5的指数分布,且ρXY=一0.25,则D(2X一3Y)=___________。
设z=f(x,y)在点(x0,y0)处可微,Δz是f(x,y)在点(x0,y0)处的全增量,则在点(x0,y0)处()
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求求Bx=0的通解。
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P-1AP=B。
已知A=是n阶矩阵,求A的特征值、特征向量,并求可逆矩阵P使P-1AP=Λ。
已知幂级数an(x+2)n在x=0处收敛,在x=一4处发散,则幂级数an(x一3)n的收敛域为___________。
设幂级数anxn与bnxn的收敛半径分别为,则幂级数的收敛半径为()
设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。求θ的最大似然估计量。
随机试题
正常心脏后前位不易观察到的是
右下腹疼痛拒按,或右足屈而不伸,伸则痛甚,甚则局部肿痞,或时时发热,自汗恶寒,舌苔薄腻而黄,脉滑数。方剂选用
气雾剂的优点有()。
《建设工程安全生产管理条例》制定的基本法律依据包括()。
若企业不打算享受现金折扣优惠,则应尽量推迟付款的时间。()
如果会计师事务所非审计项目组成员的主要近亲属,通过继承从审计客户获得直接经济利益,则()。
《与朱元思书》是八年级下册第五单元的一篇课文,如果让你给八年级的学生执教这篇课文,你会怎么做呢?请按要求完成后面的题目:附:《与朱元思书》课文与朱元思书①
缺陷补偿,是指个体在充当社会角色时不可能事事成功,当自我角色目标失败时,常常可能会对相关的社会角色的重要性做重新评价,从而进行自我定义以补偿自己角色缺陷。根据上述定义,下列属于缺陷补偿的是()。
求|cos(x+y)|dxdy,其中D={(x,y)|
A、Assoonasshestarteduniversity.B、Aftershedidsomeresearch.C、Aftershetookaliteraturecourse.D、Whenshemetagood
最新回复
(
0
)