首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
解线性方程组
解线性方程组
admin
2020-03-10
41
问题
解线性方程组
选项
答案
解一 用初等行变换将其增广矩阵[*]化为含最高阶单位矩阵的矩阵[*],即 [*] 显然秩[*]=秩(A)=3n=4,故一个基础解系只含n-秩(A)=4-3=1个解向量α.又因最高阶(三阶)单位矩阵位于A
1
中的第2,3,4列,故α的第2,3,4个分量分别为A
1
中其余的一列,即第1列的前3个分量反号,而α的第1个分量为一阶单位矩阵,即为1,因而 α=[1,-2,-1,-0]
T
=[1,-2,-1,0]
T
. 又由[*]的最后一列还得知一特解η
0
=[0,-2,3,6]
T
,于是原方程组的通解为 X=kα+η
0
(k为任意实数). 解二 用高斯消元法求解.对增广矩阵[*]作初等行变换,得到 [*] 已将[*]化成了行阶梯形,其与首非零元对应的未知量为x
1
,x
2
,x
4
,选它们为独立未知量,则x
3
就是自由未知量,于是易得到用自由未知量x
3
表示独立未知量的同解方程组,即 [*] 则方程组的通解用自由未知量可表示为 [*] 若令x
3
=k,也可得到方程组的参数形式的通解 x
1
=3-k, x
2
=-8+2k, x
3
=k, x
4
=6, 其中k为任意常数. 在此基础上也可将上述通解改写成用对应齐次方程组的基础解系和原方程组的一特解来表示,即 X=[x
1
,x
2
,x
3
,x
4
]
T
=[3-k,-8+2k,k,6]
T
=[3-k,-8+2k,0+k,6+0k]
T
=[3,-8,0,6]
T
+[-k,2k,k,0]
T
=[3,-8,0,6]
T
+k[-1,2,1,0]
T
. 可见,求出用自由未知量表示的通解①是求其他形式的通解的基础.
解析
转载请注明原文地址:https://kaotiyun.com/show/NrD4777K
0
考研数学三
相关试题推荐
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分出dz|(1,1)=__________。
设I1=dσ,I2=cos(x2+y2)dσ,I3=cos(x2+y2)2dσ,其中D={(x,y)|x2+y2≤1},则()
设A,B为两个随机事件,且BA,则下列式子正确的是()
设四元齐次线性方程组(1)为而已知另一四元齐次线性方程组(2)的一个基础解系为α1=(2,一1,a+2,1)T,α2=(一1,2,4,a+8)T。当a为何值时,方程组(1)与(2)有非零公共解?并求出所有非零公共解。
在某国,每年有比例为p的农村居民移居城镇,有比例为g的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把凡年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。求关系式[*]中的矩阵A;
设三阶矩阵A的特征值λ1=l,λ2=2,λ3=3对应的特征向量依次为α1=(1,1,1)T,α2=(1,2,4)T,α3=(1,3,9)T。将向量β=(1,1,3)T用α1,α2,α3线性表示;
已知矩阵A=有特征值λ=5,求a的值;当a>0时,求正交矩阵Q,使Q-1AQ=Λ。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1。=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。求可逆矩阵P使得P-1AP=Λ。
设A为正交矩阵,且|A|=一1,证明:λ=一1是A的特征值。
求下列极限:
随机试题
简述劳动说的意义及缺陷。
下列不属于矫味剂的是
患者,男性,70岁。因近10天逐渐出现眼黄、尿黄,大便陶土样,全身皮肤瘙痒入院。提示:体检发现胆囊肿大,Murphy征阴性,肝大肋下3cm,无触痛。血清总胆红素200mmol/L,直接胆红素182mmol/L。诊断可能较大为
汞齐化测定金属有机药物时,加入的试剂有
妊娠恶阻脾胃虚弱证的特点是
规范的股权结构的含义不包括( )。
学习动机
某电镀厂两次改进操作方法,使用锌量比原来节省15%,则平均每次节约().
下列排序方法中,最坏情况下比较次数最少的是
A、Hewalkedalongdistance.B、Heistired.C、He’swet.D、Helosthisraincoat.C本题关键在于清楚man的应答,其中有一个最关键的字raincoat。故可知这时的天气是个下雨天
最新回复
(
0
)