首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
admin
2014-02-05
52
问题
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f
’’
(x)<0,且f(x)在[0,1]上的最大值为M.求证:
自然数n,存在唯一的x
n
∈(0,1),使得
选项
答案
由题设知存在x
M
∈(0,1)使得f(x
M
)=M,由题(I)知M>0.方法1。要证[*]在(0,1)存在零点[*]在(0,1)存在零点.对n=1,2,3,…引入辅助函数[*]→F
n
(x)在[0,1]连续,在(0,1)可导,F
n
(0)=f(0)=0.再找F
n
(x)在(0,1)的一个零点.因[*]→存在ξ
n
∈(x,1)使得F
n
(ξ
m
)=0.在[0,ξ
n
][*][0,1]上对F
n
(x)用罗尔定理→存在x
n
∈(0,ξ
n
)[*](0,1),F
n
’
(x
n
)=0,即[*]方法2。同前分析,作辅助函数[*]由F
n
(x)在[0,1]上连续,在(0,1)内可导,且[*]F
n
(x)在[0,1]的最大值不能在x=0或x=1取到.[*]由费马定理→F
n
’
(x
n
)=0,即[*]方法3。先证[*]是f
’
(x)的某一中间值.因f
’
(x
M
)=0,由拉格朗日中值定理,存在ξ
p
∈(0,x
M
)使得[*]亦即[*]由连续函数中间值定理→存在x
n
∈(ξ
n
,x
M
)[*](0,1),使得[*]最后再证唯一性.由f
’’
(x)<0(x∈(0,1))f
’
(x)在(0,1)单调减少→在区间(0,1)内[*]的点是唯一的,即x
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/OG34777K
0
考研数学二
相关试题推荐
求解线性方程组
(2016年)设函数f(x)连续,且满足∫0xf(x—t)dt=∫0x(x—t)f(t)dt+e-x一1,求f(x)。
[2007年]设二元函数计算二重积分其中D={(x,y)||x|+|y|≤2}.
(99年)设f(χ,y)连续,且f(χ,y)=χy+f(u,v)dudv.其中D是由y=0,y=χ2,χ=1所围区域,则f(χ,y)等于【】
(90年)设函数f(χ)对任意的χ均满足等式f(1+χ)=af(χ),且有f′(0)=b,其中a、b为非零常数,则【】
(2006年)设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则()
设矩阵A=,b=.若集合Ω={1,2}.则线性方程组Ax=b有无穷多解的充分必要条件为
[2014年]设平面区域D={(x,y)|1≤x2+y2≤4,x≥0,y≥0},计算
下列反常积分收敛的是()。
随机试题
基金投资组合公告的披露事项主要包括( )。
作为一门课程,公共关系学首次在大学内被讲授是在【 】
导致泄泻发生的重要因素是:
A、液-液萃取法B、沉淀法C、硅胶色谱法D、聚酰胺色谱法E、离子交换色谱法根据物质溶解度不同进行分离的方法是
股份有限公司作出增加或者减少注册资本的决议,必须经出席会议的股东()以上通过。
上级领导用于对下级机关布置工作、阐明工作活动原则的指导性文件,称为()。
下列属于“丝绸之路”上保留至今的文明遗迹是()。
设
数学表达式写成c++语言的表达式为【】。
Readthee-mailsbelow.Completethebookingformontheoppositepage.Writeawordorphrase(inCAPITALLETTERS)oranumber
最新回复
(
0
)