首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f’’(x)
admin
2014-02-05
50
问题
若函数f(x)在[0,1]上连续,在(0,1)内具有二阶导数,f(0)=f(1)=0,f
’’
(x)<0,且f(x)在[0,1]上的最大值为M.求证:
自然数n,存在唯一的x
n
∈(0,1),使得
选项
答案
由题设知存在x
M
∈(0,1)使得f(x
M
)=M,由题(I)知M>0.方法1。要证[*]在(0,1)存在零点[*]在(0,1)存在零点.对n=1,2,3,…引入辅助函数[*]→F
n
(x)在[0,1]连续,在(0,1)可导,F
n
(0)=f(0)=0.再找F
n
(x)在(0,1)的一个零点.因[*]→存在ξ
n
∈(x,1)使得F
n
(ξ
m
)=0.在[0,ξ
n
][*][0,1]上对F
n
(x)用罗尔定理→存在x
n
∈(0,ξ
n
)[*](0,1),F
n
’
(x
n
)=0,即[*]方法2。同前分析,作辅助函数[*]由F
n
(x)在[0,1]上连续,在(0,1)内可导,且[*]F
n
(x)在[0,1]的最大值不能在x=0或x=1取到.[*]由费马定理→F
n
’
(x
n
)=0,即[*]方法3。先证[*]是f
’
(x)的某一中间值.因f
’
(x
M
)=0,由拉格朗日中值定理,存在ξ
p
∈(0,x
M
)使得[*]亦即[*]由连续函数中间值定理→存在x
n
∈(ξ
n
,x
M
)[*](0,1),使得[*]最后再证唯一性.由f
’’
(x)<0(x∈(0,1))f
’
(x)在(0,1)单调减少→在区间(0,1)内[*]的点是唯一的,即x
n
.
解析
转载请注明原文地址:https://kaotiyun.com/show/OG34777K
0
考研数学二
相关试题推荐
A、 B、 C、 D、 B
设函数f(x)连续,φ(x)=xf(t)dt.若φ(1)=1,(1)=5,则f(1)=_________.
(15年)设矩阵A=相似于矩阵B=.(Ⅰ)求a,b的值;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
[2018年]将长为2m的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小值?若存在,求出最小值.
[2003年]设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,依概率收敛于__________.
设f(x)二阶可导,f(x)/x=1,且f(1)=1,证明:存在ξ∈(0,1),使得f"(ξ)一2f’(ξ)=-2。
计算,其中D是由x2+y2=4与x2+(y+1)2=1围成的区域。
求解微分方程的通解.
设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:f(x)的表达式。
随机试题
下列属于灭菌法的是
34岁男性患者,因周期性寒战、高热入院。查体脾肋下2cm,实验室检查RBC2.5×1012/L,Hb76g/L,血涂片发现间日疟原虫,最适宜的治疗是
赵某涉嫌报复陷害罪被检察机关立案侦查,在侦查即将终结时,赵某得知负责办理该案的侦查人员蔡某是被害人的胞兄,遂申请其回避。检察长经审查作出了蔡某回避的决定。对于蔡某在侦查阶段收集的证据,下列哪一选项是正确的?
下列量中属于国际单位制导出量的有____________。
支付结算的结算方式包括()。
我国古代提出“有教无类”思想的是著名教育家________。
观看“最美教师”“最美司机”人物事迹所产生的情感体验主要是()。
杜威的教育理论代表作是______。
现行PC机的联向技术中,采用串行方法与主机通讯时,其数据传输速率的单位经常采用( )。
主机板有许多分类方法,其中按扩展槽分类的是______。
最新回复
(
0
)