首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1=(1,﹣1,1)T,α2=(1,k,﹣1)T,α3=(k,1,2)T,β=(4,k2,﹣4)T,试习之 (1)k取何值时,β不能由向量组α1,α2,α3线性表示; (2)k取何值时,β可由向量组α1,α2,α3线性表示,且表示式唯一; (3)k
设向量α1=(1,﹣1,1)T,α2=(1,k,﹣1)T,α3=(k,1,2)T,β=(4,k2,﹣4)T,试习之 (1)k取何值时,β不能由向量组α1,α2,α3线性表示; (2)k取何值时,β可由向量组α1,α2,α3线性表示,且表示式唯一; (3)k
admin
2020-06-05
37
问题
设向量α
1
=(1,﹣1,1)
T
,α
2
=(1,k,﹣1)
T
,α
3
=(k,1,2)
T
,β=(4,k
2
,﹣4)
T
,试习之
(1)k取何值时,β不能由向量组α
1
,α
2
,α
3
线性表示;
(2)k取何值时,β可由向量组α
1
,α
2
,α
3
线性表示,且表示式唯一;
(3)k取何值时,β可由向量组α
1
,α
2
,α
3
线性表示,但表示式不唯一,并写出该表示式.
选项
答案
设A=(α
1
,α
2
,α
3
),[*].则 |A|=[*]=﹣(k+1)(k-4) 当k=﹣1时, [*] 于是R(A)=2,[*]=3,所以当k=﹣1时,β不能由向量组α
1
,α
2
,α
3
线性表示. 当k=4时, [*] 于是R(A)=[*]=2,所以当k=4时,β可由向量组α
1
,α
2
,α
3
线性表示,但表示式不唯一. 又线性方程Ax=β的通解为 x=[*](t∈R) 故 β=﹣3tα
1
+(4-t)α
2
+tα
3
当k≠﹣1且k≠4时,由于|A|≠0,即R(A)=[*]=3,所以β能由向量组α
1
,α
2
,α
3
线性表示,且表示式唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/ONv4777K
0
考研数学一
相关试题推荐
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设f(x)是二阶常系数非齐次线性微分方程y’’+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
已知n维向量组(Ⅰ):α1,α2,…,αs和向量组(Ⅱ):β1,β2,…,βt的秩都等于r,那么下述命题不正确的是()
设A,B是n阶方阵,A,Y,b是n×1矩阵,则方程组有解的充要条件是()
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示,则
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解必是
求BX=0的通解.
设(I)用变换x=t2将原方程化为y关于t的微分方程;(Ⅱ)求原方程的通解.
随机试题
在101.3kPa下,水的冰点即水的三相点为0℃。()
A、libraryB、besidesC、irritateD、inviteC
乳剂不稳定的原因是A、分层B、絮凝C、转相D、破裂E、酸败乳滴聚集成团但仍保持单个乳滴的完整分散个体而不合并
受委托创作的作品,著作权的归属由委托人和受托人通过合同约定。合同未作明确约定或者没有订立合同的,著作权属于()。
按现行会计制度规定,短期借款所发生的利息,一般应计人的会计科目是()
中大公司2008年末股东权益总额为1000万元,无优先股,每股市价10元。2009年初决定投资一新项目,需筹集资金500万,股东大会决定通过发行新股的方式筹集资金,发行价格为每股10元,每股面值1元不考虑筹资费用,2009年增加留存收益100万元,则200
Peterruns______inourclass.
酶是生物体内的一种特殊的()。
Ryanahasjustfinishedherbusinessdegree.Shewouldliketorelaxinaclean,quietcitywhichhasalonghistory.Jennyan
Inhisyouth,KnuteAxelbrodwantedtolearnmanylanguages,toknoweverythingabouthumanhistory,to【C1】______wisebyreadin
最新回复
(
0
)