首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1=(1,﹣1,1)T,α2=(1,k,﹣1)T,α3=(k,1,2)T,β=(4,k2,﹣4)T,试习之 (1)k取何值时,β不能由向量组α1,α2,α3线性表示; (2)k取何值时,β可由向量组α1,α2,α3线性表示,且表示式唯一; (3)k
设向量α1=(1,﹣1,1)T,α2=(1,k,﹣1)T,α3=(k,1,2)T,β=(4,k2,﹣4)T,试习之 (1)k取何值时,β不能由向量组α1,α2,α3线性表示; (2)k取何值时,β可由向量组α1,α2,α3线性表示,且表示式唯一; (3)k
admin
2020-06-05
42
问题
设向量α
1
=(1,﹣1,1)
T
,α
2
=(1,k,﹣1)
T
,α
3
=(k,1,2)
T
,β=(4,k
2
,﹣4)
T
,试习之
(1)k取何值时,β不能由向量组α
1
,α
2
,α
3
线性表示;
(2)k取何值时,β可由向量组α
1
,α
2
,α
3
线性表示,且表示式唯一;
(3)k取何值时,β可由向量组α
1
,α
2
,α
3
线性表示,但表示式不唯一,并写出该表示式.
选项
答案
设A=(α
1
,α
2
,α
3
),[*].则 |A|=[*]=﹣(k+1)(k-4) 当k=﹣1时, [*] 于是R(A)=2,[*]=3,所以当k=﹣1时,β不能由向量组α
1
,α
2
,α
3
线性表示. 当k=4时, [*] 于是R(A)=[*]=2,所以当k=4时,β可由向量组α
1
,α
2
,α
3
线性表示,但表示式不唯一. 又线性方程Ax=β的通解为 x=[*](t∈R) 故 β=﹣3tα
1
+(4-t)α
2
+tα
3
当k≠﹣1且k≠4时,由于|A|≠0,即R(A)=[*]=3,所以β能由向量组α
1
,α
2
,α
3
线性表示,且表示式唯一.
解析
转载请注明原文地址:https://kaotiyun.com/show/ONv4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设事件A,B,C两两独立,则事件A,B,C相互独立的充要条件是().
设A是n(n≥2)阶可逆方阵,A*是A的伴随矩阵,则(A*)*=()
微分方程y’’一4y=x+2的通解为().
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为()
设A,B是n阶方阵,X,Y,b是n×1矩阵,则方程组有解的充要条件是()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为().
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
设,讨论当a,b取何值时,方程组Ax=b无解、有唯一解、有无数个解,有无数个解时求通解.
随机试题
正常人体温维持在37℃左右,一昼夜上下波动不超过()
正常脐带内含有( )。
下列哪些方剂的变化属于药量增减的变化()。
企业对外转让一项土地使用权,取得的价款收入为900000元,土地使用权的账面余额为1000000元,累计摊销440000元,转让时发生以现金支付的费用30000元,此项业务在现金流量表中应()。
事业单位专用基金是指事业单位按规定提取或设置的专门用途的净资产,主要包括修购基金、职工福利基金等。()
根据反不正当竞争法及相关规定,经营者的下列哪些行为属于不正当竞争行为?
教育目的要回答的一个根本问题是()。
新时代不是靠一个人开辟的,它靠众多人高举理想,勇于挑战,即使途中______也毫不畏惧,______,才能开辟新时代,不要怕自己会失败,青年应该想:“即使我成为倒下的一员,也要尽我所能”,甚至在自己倒下的地方,对5年后、10年后、20年后______自己遗
Eatinghealthilycostsabout$1.50moreperpersondaily,accordingtothemostthoroughreviewyetoftheaffordabilityofahe
RisingInequalityIsHoldingBacktheU.S.Economy[A]Inannouncinghisrunforthepresidencylastmonth,JebBushhassetan
最新回复
(
0
)