首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α1,α2线性无关,若α1+2α2—α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Ax=β的通解为( )
admin
2019-05-15
84
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
1
,α
2
线性无关,若α
1
+2α
2
—α
3
=β,α
1
+α
2
+α
3
+α
4
=β,2α
1
+3α
2
+α
3
+2α
4
=β,k
1
,k
2
为任意常数,那么Ax=β的通解为( )
选项
A、 
B、 
C、 
D、 
答案
B
解析
由α
1
+2α
2
—α
3
=β知
即γ
1
=(1,2,—1,0)
T
是Ax=β的解。同理γ
2
=(1,1,1,1)
T
,γ
3
=(2,3,1,2)
T
均是Ax=β的解,则
η
1
=γ
1
—γ
2
=(0,1,—2,—1)
T
,η
2
=γ
3
—γ
2
=(1,2,0,1)
T
是导出组Ax=0的解,并且它们线性无关。于是Ax=0至少有两个线性无关的解向量,则n—r(A)≥2,即r(A)≤2,又因为α
1
,α
2
线性无关,故r(A)=r(α
1
,α
2
,α
3
,α
4
)≥2。所以必有r(A)=2,从而n—r(A)=2,因此η
1
,η
2
就是Ax=0的基础解系,故选B。
转载请注明原文地址:https://kaotiyun.com/show/j704777K
0
考研数学一
相关试题推荐
计算下列三重积分或将三重积分化成累次积分I=(lx2+my2+nz2)dV,其中Ω:x2+y2+z2≤a2,l,m,n为常数.
求下列二重积分设a>0为常数,求积分I=xy2dσ,其中D:x2+y2≤ax.
设p(x)在(a,b)连续,∫p(x)dx表示p(x)的某个原函数,C为任意常数,证明:y=Ce-∫p(x)dx是方程y’+p(x)y=0的所有解.
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=-0.1,P{x≤0|Y≥2}=5/8,记Z=X+Y.求:P{Z=X}与P{Z=Y}.
设二维随机变量(X,Y)的联合分布为其中a,b,c为常数,且EXY=-0.1,P{x≤0|Y≥2}=5/8,记Z=X+Y.求:Z的概率分布;
设A是3阶矩阵,且各行元素之和都是5,则A必有特征向量_______.
已知A是m×n矩阵,B是n×p矩阵,如AB=C,且r(C)=m,证明A的行向量线性无关.
随机试题
提倡“义理、考据、辞章”的作家是【】
A.清化肃肺B.补肾纳气C.温化宣肺D.补肺固卫哮病发作期属寒哮的治法是
麦芽与山楂的共同主治证是()
一名50岁体质较差的女性患者,十二指肠溃疡穿孔20小时,入院施行穿孔修补术后6天体温38℃,腹痛、腹胀,大便次数增多,有黏液,里急后重,诊断为盆腔脓肿。以下治疗措施哪项是错误的
在稳定类基层材料拌合时,应重点检查结合料的剂量、最佳含水量的控制以及拌合方法及均匀性等。()
依据《劳动合同法》,劳动者的权利有()。
( )是对在中华人民共和国境内车辆、船舶(简称车船)的所有人或者管理人所征收的一种税。
发行人在境内发行股票或者可转换公司债券、证券公司在境内承销证券以及投资者认购境内发行的证券,适用()。
下列关于上海行政、司法概况的说法中,正确的有()。
Thethiefwasfinallycapturedtwomilesawayfromthevillage.
最新回复
(
0
)