首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
设f(χ)=(akcoskχ+bksinkχ),其中口ak,bk(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f(m)(χ)在[0,2π)也必有两个相异的零点.
admin
2018-11-11
53
问题
设f(χ)=
(a
k
coskχ+b
k
sinkχ),其中口a
k
,b
k
(k=1,2,…,n)为常数.证明:(Ⅰ)f(χ)在[0,2π)必有两个相异的零点;(Ⅱ)f
(m)
(χ)在[0,2π)也必有两个相异的零点.
选项
答案
(Ⅰ)令F(χ)=[*],显然F′(χ)=f(χ)由于F(χ)是以2π为周期的可导函数,故F(χ)在[0,2π]上连续,从而必有最大值与最小值.设F(χ)分别在χ
1
,χ
2
达到最大值与最小值,且χ
1
≠χ
2
,χ
1
,χ
2
∈[0,2,π),则F(χ
1
),F(χ
2
)也是F(χ)在(-∞,+∞)上的最大值,最小值,因此χ
1
,χ
2
必是极值点.又F(χ)可导,由费马定理知F′(χ
1
)=f(χ
1
)=0,F′(χ
2
)=f(χ
2
)=0. (Ⅱ)f
(m)
(χ)同样为(Ⅰ)中类型的函数即可写成f
(m)
(χ)=[*],其中α
k
,β
k
(k=1,2,…,n)为常数,利用(Ⅰ)的结论,f
(m)
(χ)在[0,2,π)必有两个相异的零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/OPj4777K
0
考研数学二
相关试题推荐
设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1+α2,α2+α3,α3+α1也是该方程组的一个基础解系.
设n阶实矩阵A为反对称矩阵,即AT=一A.证明:对任意一个n维实列向量α,α与Aα正交;
设函数f(x)在[0,1]上非负连续,且f(0)=f(1)=0,证明对实数a(0<a<1),必有ξ∈[0,1)使f(ξ+a)=f(ξ).
设f(x)在[0,1]上二阶可导,且|f(x)|≤a,|f”(x)|≤b,其中a,b为非负常数,证明对任意x∈(0,1),有
设函数fi(x)(i=1,2)具有二阶连续导数,且fi(x0)
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值f(a)=g(a),f(b)=g(b),证明存在ξ∈(a,b),使得f’’(ξ)=g’’(ξ).
设f(x)在[a,b]上有连续的导数,证明
随机试题
计算机系统只能识别的,也是唯一能识别的语言是()。
认识我国改革开放和社会主义现代化建设的形势,首先要分清主流和支流,看到取得的成绩是主流,同时又不忽视支流。这是在哲学上坚持了【】
格林-巴利综合征最重要的治疗是
A、K+B、Na+C、Ca2+D、Cl-E、H+兴奋到达轴突末梢,进入末梢膜内的离子
2005年12月,中国正式获准开业经营的首家货币经纪公司是()。
外部审计与信息披露的关系中,除了有利于提高信息披露质量外,还有利于()。
甲股份有限公司(本题下称“甲公司”)为上市公司,20×1年1月1日递延所得税资产(全部为存货项目计提的跌价准备)为33万元;递延所得税负债(全部为交易性金融资产项目的公允价值变动)为16.5万元,适用的所得税税率为25%。20×1年该公司提交的高新技术企业
黄先生通过自筹资金,开办了一家核定床位为100张的养老院,根据当地的相关政策,按照每张床位补贴1万元的标准,黄先生开办的养老院可以获得100万元的一次性财政补贴。根据该资助方式,当地政府扮演的是()
摇曳:晃动
根据下面材料,回答:被评估设备购建于1996年,账面价值100000元,2001年对设备进行了技术改造,追加技改投资50000元,2006年对该设备进行评估,根据评估人员的调查、检查、对比分析得到以下数据:(1)从1996年至200
最新回复
(
0
)