首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(一∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=在(一∞,0)和(0,+∞)都是单调增加的.
设f(x)在(一∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=在(一∞,0)和(0,+∞)都是单调增加的.
admin
2016-01-11
115
问题
设f(x)在(一∞,+∞)内二阶可导,且f”(x)>0,f(0)=0,证明:φ(x)=
在(一∞,0)和(0,+∞)都是单调增加的.
选项
答案
[*] g(x)=xf’(x)-f(x),g(0)=-f(0)=0, g’(x)=f’(x)+xf”(x)-f’(x)=xf”(x),g’(0)=0, 当x<0时g’(z)<0,当x>0时g’(x)>0,故g(0)=0是g(x)的最小值,所以当x≠0时,g(x)>g(0)=0,从而φ’(x)>0,即φ(x)在(一∞,0)和(0,+∞)都是单调增加的.
解析
转载请注明原文地址:https://kaotiyun.com/show/6l34777K
0
考研数学二
相关试题推荐
设f(x)在x=0处具有二阶连续导数,且已知,试求f(0),f'(0),f"(0)及极限。
已知α1,α2,α3是四元非齐次线性方程组AX=b的3个解,其中2α1一α2=[0,2,2,2]T,α1+α2+α3=[4,一1,2,3]T,2α2+α3=[5,一1,0,1]T,秩(A)=2,那么方程组AX=b的通解是__________.
设f(x)为微分方程yˊ-xy=g(x)满足y(0)=1的解,其中g(x)=,则有()
设α1,α2,β1,β2为三维列向量组,且α1,α2与β1,β2都线性无关.(Ⅰ)证明:至少存在一个非零向量可同时由α1,α2和β1,β2线性表示;(Ⅱ)设,求出可由两组向量同时表示的向量.
设相似.求方程组(3E-A*)x=0的通解.
设f(x)在[0,t](t>0)上有n阶导数且非负,已知f(0)=f’+(0)=f”+(0)=…=f+(n-2)(0)=0,f(n)(x)>0.(I)求F(t)=∫0tsf(x)dx-t∫0tf(x)dx(n为大于1的正整数)的n阶导数;(Ⅱ)证明:(
设u(x,y)的全微分du=(x>0,y>0),u(x,y)有二阶连续偏导数,则()
(Ⅰ)求an=∫0nπx|sinx|dx(n为正整数);(Ⅱ)在第(Ⅰ)问的基础上,求级数anxn-1的收敛域及和函数.
设f(x)在[0,1]上二阶可导,f(0)=0,且证明:存在一点ξ∈(0,1),使得f’>(ξ)=0;
随机试题
生命中最主要的物质基础是()。
以下反映肺换气功能的参数是
A.稽留热B.不规则热C.弛张热D.间歇热E.午后热疟疾的常见热型是
结核性腹膜炎最有价值的检查足
古代学校教育中作为教育内容的“六艺”是指:______、乐、射、御、书、数。
阅读下面这首唐诗,回答问题。醉眠唐庚山静似太古,日长如小年。馀花犹可醉,好鸟不妨眠。世味门常掩,时光簟已便。梦中频得句,拈笔又忘筌。
通过主体调节过程研究自我发展的代表人物是()。
ParkingProblem;Forbiddenin【D1】______percentofstreetsReason:Buildingapartmentsand【D2】______ismoreprofitable,hencefew
Bloggingisapastimeformany,evenalivelihoodforafew.Forsome,itbecomesan【B1】______.Suchbloggersoftenfeelcompel
MessagetoyoungChineseinthe21stcenturyFundamentalSciencehasprovideduswithanincreasinglydetailedandaccurate
最新回复
(
0
)