首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: ξ1,…,ξr1,η1,…,ηr2是方程组ABx=0的一个基础解系.
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: ξ1,…,ξr1,η1,…,ηr2是方程组ABx=0的一个基础解系.
admin
2021-07-27
53
问题
设n阶矩阵A,B乘积可交换,ξ
1
,…,ξ
r1
和η
1
,…,η
r2
分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明:
ξ
1
,…,ξ
r1
,η
1
,…,η
r2
是方程组ABx=0的一个基础解系.
选项
答案
显然ABη
i
=0,i=1,2,…,r
2
,又AB=BA,所以ABξ
i
=0,i=1,2,…,r
1
,故ξ
1
,…,ξ
r1
,η
1
,…,η
r1
是方程组ABx=0的r
1
+r
2
个线性无关的解向量.又r(AB)≥r(A)+r(B)-n=(n-r
1
)+(n-r
2
)-n=n-(r
1
+r
2
),所以ABx=0的基础解系中至多有n-[n-(r
1
+r
2
)]=r
1
+r
2
个解向量,从而ξ
1
,…,ξ
r1
,η
1
,…,η
r1
为ABx=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/OTy4777K
0
考研数学二
相关试题推荐
设n(n≥3)阶矩阵若矩阵A的秩为n—1,则a必为()
设A,B皆为n阶矩阵,则下列结论正确的是().
设η1,η2,η3为3个n维向量,已知n元齐次方程组AX=0的每个解都可以用η1,η2,η3线性表示,并且r(A)=n-3,证明η1,η2,η3为AX=0的一个基础解系.
设f(x)在[0.1]上二阶可导.且f(0)=f’(0)=f(1)=f’(1)=0.证明:方程f’’(x)-f(x)=0在(0.1)内有根.
设A=(1)证明:A可对角化;(2)求Am.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t).(1)问t为何值时,向量组α1,α2,α3线性无关?(2)当t为何值时,向量组α1,α2,α3线性相关?(3)当α1,α2,α3线性相关时,将α1表示为α1和α2的线性组合.
已知y1=xex+e2x和y2=xex+e一x是二阶常系数非齐次线性微分方程的两个解,则此方程为()
设A是n阶矩阵,下列结论正确的是().
微分方程的通解是(其中C为任意常数)()
微分方程y’’+y=x2+1+sinx的特解形式可设为()
随机试题
适用于0~6个月婴幼儿的行为测听方法为
某男,54岁,2小时前因家事不和突然出现心前区疼痛,为隐痛呈阵发性,现已发作3次,每次持续数分钟。伴脘腹胀闷,嗳气则舒。诊见,时时太息,苔薄白,脉细弦。
孙某与沈某因共同对陈某实施殴打行为受到某县公安局罚款处罚。孙某不服处罚决定向人民法院提起行政诉讼。下列哪些说法是正确的:()
关于综合性学习的说法有误的是()。
从创新与环境的关系分析,分为()创新。
AccordingtothestudybyAPA,intensifiedaggressionhadnothingtodowith______.CraigAndersonwouldprobablyagreethat_
网桥中实现网络互联的层次是()。
ウインター.スポーツとして最近は、スキーが流行している。日本は世界の中でも、かなり雪の多い国である。夏、海で真っ黒に日焼けしたり、爽やかな高原でアウト.ドア.スポーツを楽しんだりする若者たち、冬になるまでそこそこに勉強し、アルバイトに①精を出す。12月にな
【26】【30】
Everyyear,theAmericanLungAssociation(ALA)releasesitsannualreportcardonsmog,andeveryyearitgivesan"F"toover
最新回复
(
0
)