首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: ξ1,…,ξr1,η1,…,ηr2是方程组ABx=0的一个基础解系.
设n阶矩阵A,B乘积可交换,ξ1,…,ξr1和η1,…,ηr2分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明: ξ1,…,ξr1,η1,…,ηr2是方程组ABx=0的一个基础解系.
admin
2021-07-27
48
问题
设n阶矩阵A,B乘积可交换,ξ
1
,…,ξ
r1
和η
1
,…,η
r2
分别是方程组Ax=0与Bx=0的一个基础解系,且对于n阶矩阵C,D,满足r(CA+DB)=n.证明:
ξ
1
,…,ξ
r1
,η
1
,…,η
r2
是方程组ABx=0的一个基础解系.
选项
答案
显然ABη
i
=0,i=1,2,…,r
2
,又AB=BA,所以ABξ
i
=0,i=1,2,…,r
1
,故ξ
1
,…,ξ
r1
,η
1
,…,η
r1
是方程组ABx=0的r
1
+r
2
个线性无关的解向量.又r(AB)≥r(A)+r(B)-n=(n-r
1
)+(n-r
2
)-n=n-(r
1
+r
2
),所以ABx=0的基础解系中至多有n-[n-(r
1
+r
2
)]=r
1
+r
2
个解向量,从而ξ
1
,…,ξ
r1
,η
1
,…,η
r1
为ABx=0的一个基础解系.
解析
转载请注明原文地址:https://kaotiyun.com/show/OTy4777K
0
考研数学二
相关试题推荐
设A是三阶矩阵,其中a11≠0,Aij=aij(i=1,2,3,j=1,2,3),则|2AT|=()
向量组α1,α2,…,αm线性相关的充分条件是【】
设A=(1)证明:A可对角化;(2)求Am.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明(1)αa不可用α1,α2,…,αs-1线性表示;(2)αs可用α1,α2,…,αs-1,β线性表示.
求满足初始条件y"+2x(y’)2=0,y(0)=1,y’(0)=1的特解.
确定常数a,b,c的值,使=4.
若向量组α1,α2,α3线性无关,向量组α1,α2,α4线性相关,则
微分方程的通解是(其中C为任意常数)()
设矩阵A与B相似,且(1)求a,b的值.(2)求可逆矩阵P,使P-1AP=B.
当x→∞时,若,则a,b,c的值一定是[].
随机试题
当每搏输出量和外周阻力不变时,心率降低可引起下列哪一项增加
家庭教育的前提和基础是【】
列入国家二级保护野生药材物种的是
朱镕基同志在2001年视察北京国家会计学院时,为北京国家会计学院题词的内容包括()。
某企业发行了期限为5年的长期债券10000万元,年利率为8%,每年年末付息一次,到期一次还本,债券发行费率为1.5%,企业所得税税率为25%,该债券的资本成本率为()。
陶行知教育思想体系的核心是
(南京大学2015)甲公司以10元的价格购入某股票,假设持有半年之后以10.2元的价格售出,在持有期间共获得1.5元的现金股利,则该股票的持有期年均收益率是()。
香港特别行政区的司法机关是()
设连续型随机变量X的概率密度为f(x),分布函数为F(x),当x>O时满足xf′(x)=(1-x)f(x),当x≤0时,f(x)=0.问常数a为何值时,概率P{a<X<a+1}最大.
Asregardssocialconventions,wemustsayawordaboutthewell-knownEnglishclasssystem.Thisisanembarrassingsubjectfor
最新回复
(
0
)