首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值. (2)求函数f(x,y)=(x2+2x+y)ey的极值.
(1)求二元函数f(x,y)=x2(2+y2)+ylny的极值. (2)求函数f(x,y)=(x2+2x+y)ey的极值.
admin
2019-09-04
83
问题
(1)求二元函数f(x,y)=x
2
(2+y
2
)+ylny的极值.
(2)求函数f(x,y)=(x
2
+2x+y)e
y
的极值.
选项
答案
(1)二元函数f(x,y)的定义域为D={(x,y)|y>0}, 由 [*] 则 [*] 因为AC-B
2
>0且A>0,所以(x,y)=[*]为f(x,y)的极小值点,极小值为 [*] (2)由 [*] 由AC-B
2
=2>0及A=2>0得 (x,y)=(-1,0)为f(x,y)的极小值点,极小值为f(-1,0)=-1.
解析
转载请注明原文地址:https://kaotiyun.com/show/OZJ4777K
0
考研数学三
相关试题推荐
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
设3阶矩阵A与对角矩阵D=相似,证明:矩阵C=(A-λ1E)(A-λ2E)(A-λ3E)=O.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在.若用“”表示可由性质P
设随机变量X的概率密度为f(x)=F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
设函数z=f(u),方程u=φ(u)+∫yxP(t)dt确定u是x,y的函数,其中f(u),φ(u)可微,P(t),φ’(u)连续,且φ’(u)≠1.求
设其中函数f,g具有二阶连续偏导数,求
求下列函数关于x的导数:(1)(2)y=ef(x).f(ex),其中f(x)具有一阶导数;(3)y=.其中f’(x)=arctanx2,并求(4)设f(t)具有二阶导数,,求f[f’(x)],{f[f(x)])’.
设y=f(lnx)ef(x),其中f可微,求
随机试题
关于骨骼兴奋与收缩的描述,正确的是()
在营养性巨幼红细胞贫血时,有早期诊断意义的是
由公司资产、收益、股息等因素所决定的是股票的()。
假设未来经济有四种状态:繁荣、正常、衰退、萧条,对应的四种经济状况发生的概率分别是30%、40%、20%、10%。现有两只股票型基金,记为甲和乙,对应四种状况,甲基金的收益率分别是60%、30%、10%、-20%;乙基金对应的收益率分别40%、20%、0%
某农用收割机制造企业生产B10-3型号收割机,年产量30000台,每台B10-3型号收割机需要D5-003型号齿轮1个。该企业年初运用在制品定额法来编制生产作业计划,确定本年度车间的生产任务,相关信息及数据如下:若假设该企业是成批生产类型企业,则适合
某商业企业年营业收入为2000万元,营业成本为1600万元;年初、年末应收账款余额分别为200万元和400万元;年初、年末存货余额分别为200万元和600万元;年末速动比率为120%,年末现金对流动负债的比率为0.7。假定该企业流动资产由速动资产和存货组成
行为人承担旅游法律责任的前提要件是()。
()是软件系统结构中各个模块之间相互联系紧密程度的一种度量。
在这里,______。
Whydoesthewomanmentionthecareercenter’sWebsite?
最新回复
(
0
)