首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
admin
2018-07-26
116
问题
设向量α
1
,α
2
,…,α
t
是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,…,β+α
t
线性无关.
选项
答案
设有一组数k
0
,k
1
,…,k
t
.使得 k
0
β+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0 即(k
0
+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0 (*) 用矩阵A左乘(*)式两端并注意Aα
i
=0(i=1,…,t),得 (k
0
+k
1
+…+k
t
)Aβ=0 因为Aβ≠0,所以有 k
0
+k
1
+…+k
t
=0 (**) 代入(*)式,得 k
1
α
1
+…+k
t
α
t
=0 由于向量组α
1
,…,α
t
是方程组Ax=0的基础解系,所以 k
1
=…=k
t
=0 因而由(**)式得k
0
=0.因此,向量组β,β+α
1
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/AHW4777K
0
考研数学三
相关试题推荐
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率α,并利用泊松定理求出α的近似值(e-5=0.007).
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A,B均是n阶矩阵,下列命题中正确的是
判断下列结论是否正确,并证明你的判断.(Ⅰ)设当n>N时xn<yn,已知极限均存在,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又存在c∈(a,b)使得极限,则f(x)在(a,b)有界;(Ⅲ)若=∞.则存在δ>0.使得当0<|x-a|<δ时有界.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
计算行列式Dn=之值.
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
设A是n阶可逆矩阵,且A与A-1的元素都是整数,证明:|A|=±1.
随机试题
《故事新编》是鲁迅先生以________为题材创作的一部短篇小说集。
处方书写中,缩写词“bid.”表示
A.削痂植皮术B.大张全厚皮片移植术C.切痂自体微粒皮移植异体皮覆盖术D.切痂后整张中厚自体皮肤移植术E.脱痂植皮术
除麦冬、石斛外,下列不属于清暑益气汤药物组成的是
纳税人采取折扣销售方式销售货物的,如果销售额和折扣额在同一张发票上分别注明的,可按折扣后的余额作为销售额计算增值税;如果将折扣额另开发票,不论其在财务上如何处理,均不得从销售额中减除折扣额。()
面对近年来原材料、劳动力等价格上升的压力,我国沿海某服装出口企业,把生产环节转移到劳动力、土地等生产要素具有优势的内陆地区,并致力于产品研发、品牌设计和营销推广,从而大大提高了产品出口竞争力。该企业竞争力提高的因素有()。①调整经营战略,利用
社会生活的变化多样,使得任何一种规则体系都不能够不加变化地_________;反过来文明社会的错综复杂.也不能仅靠抽象原则与模糊观念来_________。填入画横线部分最恰当的一项是:
条件充分性判断:A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和(2)单独都不充分,条件(1)和(
Aisforalwaysgettingtoworkontime.Bisforbeingextremelybusy.Cisfortheconscientious(勤勤恳恳的)wayyoudoyo
Inalmostallchemical-processplants,heatis______byburningoffossilfuels—coal,oil,ornaturalgas.
最新回复
(
0
)