首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
设向量α1,α2,…,αt是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,…,β+αt线性无关.
admin
2018-07-26
70
问题
设向量α
1
,α
2
,…,α
t
是齐次线性方程组AX=0的一个基础解系,向量β不是方程组AX=0的解,即Aβ≠0.试证明:向量组β,β+α
1
,…,β+α
t
线性无关.
选项
答案
设有一组数k
0
,k
1
,…,k
t
.使得 k
0
β+k
1
(β+α
1
)+…+k
t
(β+α
t
)=0 即(k
0
+k
1
+…+k
t
)β+k
1
α
1
+…+k
t
α
t
=0 (*) 用矩阵A左乘(*)式两端并注意Aα
i
=0(i=1,…,t),得 (k
0
+k
1
+…+k
t
)Aβ=0 因为Aβ≠0,所以有 k
0
+k
1
+…+k
t
=0 (**) 代入(*)式,得 k
1
α
1
+…+k
t
α
t
=0 由于向量组α
1
,…,α
t
是方程组Ax=0的基础解系,所以 k
1
=…=k
t
=0 因而由(**)式得k
0
=0.因此,向量组β,β+α
1
,…,β+α
t
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/AHW4777K
0
考研数学三
相关试题推荐
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设f(x)在(a,b)内处处可导,且满足f’(x)≠0.证明对任何x0∈(a,b)一定存在x1,x2∈(a,b)使得f(x1)>f(x0)>f(x2).
设f(x)=试确定常数a,使f(x)在x=0处右连续.
给出满足下列条件的微分方程:(I)方程有通解y=(C1+C2x+x-1)e-x;(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
求微分方程y’’+2y’-3y=ex+x的通解.
设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表出,则下列命题正确的是
已知A=,B是3阶非0矩阵,且BAT=0,则a=________.
设A,B均为n阶矩阵,|A|=2,|B|=-3,求(Ⅰ)|2A*B-1|;(Ⅱ)||2A*|BT|.
证明:与基础解系等价的线性无关的向量组也是基础解系.
由曲线y=lnx与两直线y=e+1-x及y=0围成平面图形的面积S=______.
随机试题
这个标志的含义是告示车辆驾驶人应慢行或停车,确保干道车辆优先。
输库存血每超过800ml后,应注射
男孩,3个月。消瘦,多汗,气短,因“肺炎”住院治疗。查体:心前区闻及杂音。检查:X线片、超声心动图等检查诊断为“室间隔缺损”。该患儿可能是哪种先天性心脏病
A.表寒里热证B.表热里寒证C.上寒下热证D.上热下寒证E.真寒假热证
处于探索阶段的中国基金业的发展的特点不包括()。
通常使用两种消极管理策略:一种是指数策略,另一种是免疫策略。()
自1998年建立了集中统一监管体制后,实施了()的辖区监管责任制。
计划安排每天自习时间表,属于学习策略中的()
设α1,α2,…,αM,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
A、Itisanelectronicdevicethatmonitorsababy’smood.B、Itisatoythatcouldtellwhenthebabyishungry.C、Itisadevic
最新回复
(
0
)