首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2018-05-21
44
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A| [*] =(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠1/2时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]C=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
[*] (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=1/2时,λ
1
=λ
2
=1/2, 因为r(1/2E-A)=2,所以方程组(1/2E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/OZr4777K
0
考研数学一
相关试题推荐
设函数f(x)在[a,b]上连续,在(a,b)上二阶可导,且f(A)=0f(B)>0,f’+(A)<0。证明:(Ⅰ)在(a,b)内至少存在一点ξ,使得f(ξ)=0;(Ⅱ)在(a,b)内至少存在一点η,使得f"(η)>0。
设D={(x,y)|a≤x≤b,c≤y≤d},若f"xy与f"yx在D上连续,证明
设函数f(x)在[0,+∞)内二阶可导,且f(0)=f’(0)=0,并当x>0时满足xf"(x)+3x[f’(x)]2≤1一e—x.证明当x>0时,f(x)<x2.
具有特解y1=e—x,y2=2xe—x,y3=3ex的三阶常系数齐次线性微分方程是()
当x→0时,下列四个无穷小中,哪一个是比其他三个高阶的无穷小()
设y=y(x)是二阶线性常系数微分方程y"+py’+qy=e3x满足初始条件y(0)=y’(0)=0的特解,则当x→0时,函数的极限()
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设,若存在秩大于1的三阶矩阵B使得BA=0,则An=________.
已知实二次型f(x1,x2,x3)=xTAx的矩阵A满足且ξ1=(1,2,1)T,ξ2=(1,一1,1)T是齐次线性方程组Ax=0的一个基础解系.(Ⅰ)用正交变换将二次型f化为标准形,写出所用的正交变换和所得的标准形;(Ⅱ)求出该二次型.
随机试题
大隐静脉()
直接反映甲状腺功能状态的指标是
A、阿托品+毛果芸香碱B、阿托品+碘解磷定C、肾上腺素D、去甲肾上腺素E、色甘酸钠抢救中、重度有机磷酸酯类中毒的药物是
境内上市公司所属企业境外上市财务顾问的职责有()。
红旗建筑安装公司(简称红旗公司)为修理下水管道,在马路一侧挖沟,并于夜间在沟边设置了警示灯。一日,因电线老化导致短路,警示灯熄灭,恰有王某夜间骑自行车逆行途经此处,摔人沟内并受伤。在王某向红旗公司索赔过程中,该公司被黄河公司兼并。王某遂向黄河公司索赔,但遭
从第一个孩子出生到最后一个孩子出生是家庭的()阶段。
1990年,上海8种上市股票股本总额为()。以下说法正确的是()。
简述滥用职权罪的行为方式
Hesaidsoftlythathe(wouldrather)stay(athome)than(goingout)(for)awalk.
AsdefinedbyGreekphilosophersandancientIndianphilosophers,musicisviewedastonesorderedhorizontallyasmelodiesand
最新回复
(
0
)