首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
设A=,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
admin
2018-05-21
30
问题
设A=
,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵.
选项
答案
|λE-A| [*] =(λ+a-1)(λ-a)(λ-a-1)=0,得矩阵A的特征值为λ
1
=1-a,λ
2
=a,λ
3
=1+a. (1)当1-a≠a,1-a≠1+a,a≠1+a,即a≠0且a≠1/2时,因为矩阵A有三个不同的特征值,所以A一定可以对角化. λ
1
=1-a时,由[(1-a)E-A]C=0得ξ
1
=[*];λ
2
=a时,由(aE-A)X=0得ξ
2
=[*];λ
3
=1+a时,由[(1+a)E-A]X=0得ξ
3
[*] (2)当a=0时,λ
1
=λ
3
=1, 因为r(E-A)=2,所以方程组(E-A)X=0的基础解系只含有一个线性无关的解向量,故矩阵A不可以对角化. (3)当a=1/2时,λ
1
=λ
2
=1/2, 因为r(1/2E-A)=2,所以方程组(1/2E-A)X=0的基础解系只含有一个线性无关的解向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/OZr4777K
0
考研数学一
相关试题推荐
设A,B为三阶相似矩阵,且|2B+A|=0,λ1=1,λ2=一1为B的两个特征值,则行列式|A+2AB|=________。
已知a,b为非零向量,且a⊥b,则必有()
具有特解y1=e—x,y2=2xe—x,y3=3ex的三阶常系数齐次线性微分方程是()
设L是圆周x2+y2=1,n为L的外法线向量,u(x,y)=等于()
设矩阵有一个特征值是3.(Ⅰ)求y的值;(Ⅱ)求正交矩阵P,使(AP)TAP为对角矩阵;(Ⅲ)判断矩阵A2是否为正定矩阵,并证明你的结论.
设α1,α2,α3是三维向量空间R3中的一组基,则由基α2,α1一α2,α1+α3到基α1+α2,α3,α2一α1的过渡矩阵为()
设,B是三阶非零矩阵,且AB=0,则()
设A为3阶实对称矩阵,若存在正交矩阵Q,使得QTAQ=,又已知A的伴随矩阵A*有一个特征值为λ=1,相应的特征向量为α=(1,1,1)T.求二次型xT(A*)-1x的表达式,并确定其正负惯性指数.
设3阶矩阵A与B相似,λ1=1,λ2=-2是矩阵A的两个特征值,且矩阵B的行列式|B|=1,则行列式|A*+E|=________.
随机试题
银盐法测粮食中的砷时,试样经消化处理后,加入碘化钾和酸性氯化亚锡使五价砷还原为三价砷,然后与新生态氢生成砷化氢,通过()浸泡的棉花取出硫化氢后,与银盐反应生成有色胶态物比色测定。
形成潜影的先决条件是
面积量算的内容包括()。
某新建剧场,设计容纳人数为2800人,按2min内人员疏散完毕的原则设计建筑的安全疏散,每股人流的通过能力为40人/min,该剧场每个出口的最小宽度宜为()m。
对在招股说明书中编造重大虚假内容且发行股票数额巨大、后果严重的,应处以非法募集资金金额()的罚金。
学生具有发展的可能性与()
鲨鱼一般都是肉食性的,但一些科学家称,他们在某海域发现了一种以植物作为食物重要组成部分的窄头双髻鲨鱼。 以下各项如果为真,最能支持这一发现的是:
简述班杜拉的观察学习理论。
Manyobjectsindailyusehaveclearlybeeninfluencedbyscience,buttheirformandfunction,theirdimensionsandappearance
PASSAGEFOUR
最新回复
(
0
)