首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是 (一1,1,0,2)T+k(1,一1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示? (Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是 (一1,1,0,2)T+k(1,一1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示? (Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
admin
2016-01-22
75
问题
设α
1
,α
2
,α
3
,α
4
,β为四维列向量组,A=(α
1
,α
2
,α
3
,α
4
),已知方程组Ax=β的通解是
(一1,1,0,2)
T
+k(1,一1,2,0)
T
.
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大线性无关组.
选项
答案
(Ⅰ)设β=k
1
α
1
+k
2
α
2
+k
3
α
3
,则Ax=β有解(k
1
,k
2
,k
3
,0)
T
与 (一1,1,0,2)
T
,又(1,一1,2,0)
T
为Ax=0的基础解系,因此 (k
1
+1,k
2
—1,k
3
解析
转载请注明原文地址:https://kaotiyun.com/show/OJw4777K
0
考研数学一
相关试题推荐
设A为三阶实对称矩阵,存在正交矩阵Q=y22+y32.(1)求正交矩阵Q;(2)求矩阵A.
设n阶矩阵A与对角矩阵合同,则A是().
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设u=,其中f(s,t)二阶连续可偏导,求du及.
早晨开始下雪整天不停,中午一辆扫雪车开始扫雪,每小时扫雪体积为常数,到下午2点扫雪2km,到下午4点又扫雪1km,问降雪是什么时候开始的?
以下矩阵可相似对角化的个数为()
设x→0时,-(ax2+bx+c)是比x2高阶的无穷小,其中a,b,c是常数,则().
已知非零向量a,b不共线,设c=λa+b,其中λ为实数,证明:|c|取最小值时的向量c垂直于a.
设非负连续型随机变量X服从指数分布,证明对任意实数r和S,有P{X>r+s|X>s}=P{X>r}.
已知某股票一年以后的价格X服从对数正态分布,当前价格为10元,且EX=15,DX=4.求其连续复合年收益率的分布.
随机试题
视锥细胞与视杆细胞的不同在于
关于肝功能减退患者抗菌药物的选用,下列说法错误的是
其他个人零售贷款的风险主要表现在()。
阅读下列公文,回答问题。开展××市农村优秀教师评定工作的决定各区(县、市)教育局:
轮胎:汽车()
公达律师事务所以为刑事案件的被告进行有效辩护而著称,成功率达90%以上。老余是一位专门以为离婚案件的当事人成功辩护而著称的律师。因此,老余不可能是公达律师事务所的成员。以下哪项最为确切地指出了上述论证的漏洞?
A、 B、 C、 D、 B
十六进制数34B对应的十进制数是
Theageofrequiringretirementincompaniesshouldberaised,andso【M1】______shouldtheagetobeginSocialSecurity.First
SixStepstoTacklingYourStudentLoans[A]Anypaymentisagooddebtpayment,butastrategycanbeusefultoo—evenifyours
最新回复
(
0
)