首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是 (一1,1,0,2)T+k(1,一1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示? (Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
设α1,α2,α3,α4,β为四维列向量组,A=(α1,α2,α3,α4),已知方程组Ax=β的通解是 (一1,1,0,2)T+k(1,一1,2,0)T. (Ⅰ)β能否由α1,α2,α3线性表示? (Ⅱ)求α1,α2,α3,α4,β的一个极大线性无关组.
admin
2016-01-22
80
问题
设α
1
,α
2
,α
3
,α
4
,β为四维列向量组,A=(α
1
,α
2
,α
3
,α
4
),已知方程组Ax=β的通解是
(一1,1,0,2)
T
+k(1,一1,2,0)
T
.
(Ⅰ)β能否由α
1
,α
2
,α
3
线性表示?
(Ⅱ)求α
1
,α
2
,α
3
,α
4
,β的一个极大线性无关组.
选项
答案
(Ⅰ)设β=k
1
α
1
+k
2
α
2
+k
3
α
3
,则Ax=β有解(k
1
,k
2
,k
3
,0)
T
与 (一1,1,0,2)
T
,又(1,一1,2,0)
T
为Ax=0的基础解系,因此 (k
1
+1,k
2
—1,k
3
解析
转载请注明原文地址:https://kaotiyun.com/show/OJw4777K
0
考研数学一
相关试题推荐
(1)设A,B为n阶矩阵,|λE-A|=λE-B|且A,B都可相似对角化,证明:A~B.(2)设A=,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
若由曲线y=,曲线上某点处的切线以及x=1,x=3围成的平面区域的面积最小,则该切线是()。
设.f(x,y)在点(0,0)处是否可微?
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴,y轴及x+y=6所围成的闭区域D上的最小值和最大值。
设A是n阶矩阵,下列命题错误的是()。
设非负函数f(x)当x≥0时连续可微,且f(0)=1,由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设f(x)=xm(1-x)n,m,n为正整数,则在(0,1)内方程f’(x)=0不同实根的个数为()
设A=可逆,a=(1,b,1)T(b>0)满足A*a=λa,A*是A的伴随矩阵求a,b,λ的值
设Z;=Xi+Xn+i=1,2,…,n),为从总体Z中取出的样本容量为n,的样本.则E(Zi)=E(Xi)+E(Xn+i)=μ+μ=2μD(Zi)=D(Xi+Xn+i)=D(xi)+D(Xn+i)(Xi与Xn+i相互独立)=σ2+σ2=2σ2∴Z-N
随机试题
简述收入确认应符合的条件。
高钾血症的心电图表现不应为
哪一项不属于水肿与鼓胀的鉴别要点
从生物药剂学角度,食物对药物的口服吸收有非常重要的影响,如饭后口服对消化道有刺激性的药物,可相应减轻对胃肠道的不良反应,延缓胃排空,使药物在胃中较为充分地吸收。若空腹服用药物,则对胃肠道刺激较强,胃排空速率快,药物快速进人十二指肠和小肠。根据生物节律,
根据《药品经营质量管理规范实施细则》,关于药品经营企业人员要求的说法,正确的是()。
一个孤立的点电荷周围的电场在空间呈辐射状分布,当点电荷为正电荷时,电场()。
徽州地区有“徽派三雕”,又有“徽派四雕”的说法,“徽派四雕”是指()。
商场的自动扶梯以匀速由下往上行驶,两个孩子嫌扶梯走得太慢,于是在行驶的扶梯上,男孩每秒钟向上走2个梯级,女孩每2秒向上走3个梯级。结果男孩用40秒钟到达,女孩用50秒钟到达。则当该扶梯静止时,可看到的扶梯级有:
一棵二叉树共有25个节点,其中5各是叶子节点,则度为1的节点数为( )。
TheUnitedStatesisacountrymadeupofmanydifferentraces.Usuallytheyaremixedtogetherandcan’tbetoldfromoneanoth
最新回复
(
0
)