首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx. (2)计算
(1)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫aa+lf(x)dx=∫0lf(x)dx. (2)计算
admin
2016-01-15
33
问题
(1)设f(x)在(一∞,+∞)上连续,证明f(x)是以l(>0)为周期的周期函数的充要条件是对任意a∈(一∞,+∞)恒有∫
a
a+l
f(x)dx=∫
0
l
f(x)dx.
(2)计算
选项
答案
(1)证明: 必要性: 设φ(a)=∫
0
a+l
f(x)dx一∫
0
a
f(x)dx,由题设 φ’(a)=f(a+l)一f(a)=0, 则φ(a)=c(常数). 设a=0,则c=φ(0)=∫
0
l
f(x)dx,那么φ(a)=∫
a
a+l
f(x)dx=∫
0
l
f(x)dx. 充分性: 在∫
0
a+l
f(x)dx=∫
0
l
f(x)dx两边对a求导,得f(a+l)一f(a)=0,故f(x)以l为周期. (2)利用上述性质,将原区间变换成对称区间,从而利于使用函数的奇偶性,于是 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/yXw4777K
0
考研数学一
相关试题推荐
若函数f(x)连续,且满足f(x)·f(-x)=1,g(x)是连续的偶函数,试证明:并计算
设函数f(x)在闭区间[a,b]上连续(a,b>0),在(a,b)内可导,证明:在(a,b)内至少存在一点ξ,使得等式=f(ξ)-ξf’(ξ)成立。
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解.(1)求A的特征值和特征向量.(2)求作正交矩阵Q和对角矩阵∧,使得
判断下列结论是否正确?为什么?(Ⅰ)若函数f(x),g(x)均在x0处可导,且f(x0)=g(x0),则f’(x0)=g’(x0);(Ⅱ)若x∈(x0-δ,x0+δ),x≠x0时f(x)=g(x),则f(x)与g(x)在x=x0处有相同的可导性;(Ⅲ
设f(x)二阶连续可导,f’’(0)=4,
设函数f(x),g(x)具有二阶导数,且g"(x)>0,若g(1)=2是g(x)的极值,f’(2)>0,讨论f[g(x)]在x=1处是否取得极值,是极大值还是极小值。
设f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f’+(a)f’-(b)>0,且g(x)≠0(x∈[a,b]),g"(x)≠0(a<x<b),证明:存在ξ∈(a,b),使得.
设a>0,讨论方程aex=x2根的个数。
设两曲线y=x2+ax+b与-2y=-1+xy3在点(-1,1)处相切,则a=________,b=________.
设f(x)=,求f(x)的连续区间及间断点.
随机试题
女,43岁,腹部多发结节性肿物2年余,1~2cm不等,生长较慢,无症状。质软,无压痛,表面光滑,界限清楚,活动度好
五脏与季节的关系错误的是
决定牙尖数目的多少是
接受降压药物治疗的高血压患者,起床时晕倒,片刻后清醒,首先考虑()
以下各选项中,属于中央银行资产的包括()。
下列有关租赁的表述中,正确的是()。
由理查德·罗杰斯创作的音乐剧是()
我国各地的雾霾,从总的方面来说是各种污染排放物经过一系列的化学和物理过程的产物,这里既有一次排放,还有二次化学转化和物理过程。从南到北情况十分复杂,当下的普遍情况既不同于当年伦敦的情况,也不同于洛杉矶的情况,曾有学者讲北京的情况属于“伦敦型”和“洛杉矶型”
二进制数110001转换成十进制数是__________。
Thepopularityofthefilmshowsthatthereviewers’fearswerecompletely______.
最新回复
(
0
)