首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
设f(x1,x2,x3)=x2Ax=x12+ax22+x32+4x1x2+4x1x3+2bx2x3,ξ=(1,1,1)T是A的特征向量,求正交变换化二次型为标准形,并求当x满足x2x=x12+x22+x32=1时,f(x1,x2,x3)的最大值。
admin
2015-12-03
29
问题
设f(x
1
,x
2
,x
3
)=x
2
Ax=x
1
2
+ax
2
2
+x
3
2
+4x
1
x
2
+4x
1
x
3
+2bx
2
x
3
,ξ=(1,1,1)
T
是A的特征向量,求正交变换化二次型为标准形,并求当x满足x
2
x=x
1
2
+x
2
2
+x
3
2
=1时,f(x
1
,x
2
,x
3
)的最大值。
选项
答案
由已知可得二次型矩阵为[*],设ξ=(1,1,1)
T
所对应的特征值为λ,则由特征值与特征向量的定义有[*],解得a=1,b=2,λ=5。故 [*] 得矩阵A的特征值为λ
1
=5,λ
2
=λ
3
=一1,对应的特征向量分别为 ξ
1
=(1,1,1)
T
,ξ
2
=(0,一1,1)
T
,ξ
3
=(一2,1,1)
T
,单位化之后构造正交矩阵,得 [*] 令x=Qy,则f(x
1
,x
2
,x
3
)=x
T
Ax=5y
1
2
—y
2
2
—y
3
2
。 因为x
T
x=(Qy)
T
Qy=y
T
(Q
T
Q)y=y
T
y=y
1
2
—y
2
2
—y
3
2
=1,所以f(x
1
,x
2
,x
3
)=5y
1
2
—y
2
2
—y
3
2
=6y
1
2
一1,注意到y
1
2
=1一(y
2
2
+y
3
2
)≤1,故f(x
1
,x
2
,x
3
)≤5, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CHw4777K
0
考研数学一
相关试题推荐
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:(1)在开区间(a,b)内g(x)≠0.(2)在开区间(a,b)内至少存在一点ξ,使
设f(a)=f(b)=0,∫abf2(x)dx=1,f’(x)∈C[a,b].证明:∫abf’2(x)dx∫abxx2f2(x)dx≥1/4.
设0<a<b,证明:(1+a)ln(1+a)+(1+b)ln(1+b)<(1+a+b)ln(1+a+b).
求y=∫0χ(1-t)arctantdt的极值.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f证明:存在ξ∈(a,b),使得f’(ξ)=f(ξ)
设向量组α1=线性相关,但任意两个向量线性:无关,求参数t.
用变量代换x=lnt将方程化为y关于t的方程,并求微分方程的通解。
[*]所求极限为和式极限的形式,则可利用夹逼准则进行求解。其中由夹逼准则可知
设Σ是半球面x2+y2+z2=1(x≥0,y≥0)的外侧,则曲线积分xyzdxdy=().
从一块半径为R的圆形铁皮上,剪下一块圆心角为α的圆扇形,用剪下的铁皮做一个圆锥形漏斗,问α为多大时,漏斗的容积最大?
随机试题
用分度头分度时,工件每转过每一等分时,分度头手柄应转进的转数n=30/Z为工件的等分数。()
金融资产
胎盘附着部位的子宫内膜完全修复需到产后
违反隔离原则的做法是
基本的信贷准则是()。
根据证券法律制度的规定,下列选项中,属于知悉证券交易内幕信息的知情人员的有()。
在考虑下级的晋升问题时,领导打算提升一位副处长的职务,但民主测评的结果表明,职工们对此人的评价很低。局党组决定由你找这位副处长谈话.你准备怎样与他谈话?
甲某是一瓜农,因其西瓜常被人偷,遂将剧毒有机农药洒在几个西瓜上,并做好记号。2005年4月23日,某市5名市民食用西瓜中毒死亡。经侦查表明,原来是甲某的邻居乙某顺手偷了甲某地里的几个西瓜运到城里去卖所致。本案中,甲某对5名市民的死亡所持的心理态度不属于(
(2005下监理)根据《中华人民共和国合同法》的规定,下列合同中,属于无效合同的是______。
Nextweekwe(sign)______thesalescontractwiththenewsupplier.
最新回复
(
0
)