首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B均是m×n矩阵,r(A)=n―s,r(B)=n-r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
已知A,B均是m×n矩阵,r(A)=n―s,r(B)=n-r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
admin
2017-06-14
65
问题
已知A,B均是m×n矩阵,r(A)=n―s,r(B)=n-r,且r+s>n,证明:线性方程组AX=0,BX=0有非零公共解.
选项
答案
A
m×n
X=0,因r(A)=n-s,故有s个线性无关解向量组成AX=0的基础解系,设为α
1
,α
2
,…,α
s
. B
m×n
X=0,因r(B)=n—r,故有r个线性无关解向量组成BX=0的基础解系,设为β
1
,β
2
,…,β
r
. 因s+r>n,故s+r个n维向量α
1
,α
2
,…,α
s
,β
1
,β
2
,…,β
r
线性相关,即存在不全为0的k
1
,k
2
,…,k
s
,μ
1
,μ
2
,…,μ
r
,使得 k
1
α
1
+k
2
α
2
+…+k
s
α
s
+μ
1
β
1
+μ
2
β
2
+…+μ
r
β
r
=0, [*] 因α
1
,α
2
,…,α
s
线性无关,β
1
,β
2
,…,β
r
线性无关,故k
i
=0(i=1,2,…,s),μ
i
=0(i=1,2,…,r),这和k
1
,k
2
,…,k
s
,μ
1
,μ
2
,…,μ
r
不全为0矛盾,故[*]是AX=0的解,ξ=[*]也是BX=0的解).
解析
转载请注明原文地址:https://kaotiyun.com/show/OZu4777K
0
考研数学一
相关试题推荐
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:对任意实数λ,必存在ξ∈(0,η),使得f’(ξ)-λ[f(ξ)-ξ]=1.
设a=(1,0,-1)T,矩阵A=aaT,n为正整数,则|aE-An|=___________.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.矩阵A的特征值和特征向量.
设向量α=(α1,α2,…,αn)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.A2;
设A为m阶实对称矩阵,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
(2010年试题,21)设二次型f(x1,x2,x3)=xTAx在正交变换x=Qy下的标准型为y12+y22,且Q的第三列为证明A+E为正定矩阵.
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}上服从均匀分布,令Z=X—Y,求X与Y的边缘概率密度函数并判断随机变量X与y的独立性;
随机试题
A.条件(1)充分,但条件(2)不充分B.条件(2)充分,但条件(1)不充分C.条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分D.条件(1)充分,条件(2)也充分E.条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联
发生交通事故造成人员伤亡的,当事人应当立即停车、抢救伤者,同时应________。
参与体温调节的微循环结构是
明确项目周期以及各个阶段的任务,有利于建立科学的()体系。
会计报告的编制要求包括( )等。
按照权责发生制原则的要求,凡是本期实际收到款项的收入和付出款项的费用,不论是否归属于本期,都应当作为本期的收入和费用处理。()
基金A当月的实际收益率为5%,基金A的业绩基准投资组合B的基准投资权重,分别为股票:债券:现金为7:2:1,当月股票、债券、现金的月指数收益率分别为5.84%、1.45%、0.48%,基准B的当月收益为(),此时基金A的超额收益率为()。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
甲乘坐乙的出租车,但乙声称:因冬季路滑,若出车祸概不负责。甲因事急不得不接受。则甲、乙达成的运输合同()。
在数据访问页的工具箱中,为了插入一段滚动的文字应该选择的图标是()。
最新回复
(
0
)