首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
admin
2018-06-27
60
问题
设α
1
,α
2
,α
3
都是n维非零向量,证明:α
1
,α
2
,α
3
线性无关
对任何数s,t,α
1
+sα
3
,α
2
+tα
3
都线性无关.
选项
答案
“[*]”用定义法也不麻烦(请读者自己做),但是用C矩阵法更加简单. α
1
+sα
3
,α
2
+tα
3
对α
1
,α
2
,α
3
的表示矩阵为 [*] 显然对任何数s,t,C的秩都是2,于是α
1
+sα
3
,α
2
+tα
3
的秩为2,线性无关. “[*]”在s=t=0时,得α
1
,α
2
线性无关,于是只要再证明α
3
不可用α
1
,α
2
线性表示.用反证法.如果α
3
可以用α
1
,α
2
线性表示,设 α
3
=c
1
α
1
+c
2
α
2
, 则因为α
3
不是零向量,c
1
,c
2
不能全为0.不妨设c
1
≠0,则有 c
1
(α
1
-[*]α
3
)+c
2
α
2
=0, 于是α
1
-[*]α
3
,α
2
线性相关,即当s=[*],t=0时α
1
+sα
3
,α
2
+tα
3
相关,与条件矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/Oek4777K
0
考研数学二
相关试题推荐
设函数u=f(x,y,z)有连续偏导数,且z=z(x,y)由方程zex-yey=zez所确定,求du.
设向量组α1,α2,…αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+α1,线性无关.
设A为10×10矩阵计算行列式|A-λE|,其中E为10阶单位矩阵,λ为常数.
设3阶矩阵A满足Aαi=iαi(i=1,2,3),其中列向量α1=(1,2,2)T,α2=(2,-2,1)T,α3=(-2,-1,2)T,试求矩阵A.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求:(1)A2.(2)矩阵A的特征值.
求微分方程y"-2y’=e2x满足条件y(0)=1,y’(0)=1的解.
设非齐次线性微分方程y’+P(x)y=Q(x)有两个不同的解y1(x),y2(x),C为任意常数,则该方程的通解是
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设f(x)=求f’(x)并讨论其连续性.
随机试题
阅读《麦琪的礼物》中的一段文字,然后回答下列问题。我的拙笔在这里告诉了诸位一个没有曲折、不足为奇的故事:那两个住在一间公寓里的笨孩子,极不聪明地为了对方牺牲了他们一家最宝贵的东西。但是,让我们对目前一般聪明人说最后一句话,在所有馈赠礼物的人当中,那两个人
六腑的共同生理特点是
A.寒凉药B.开窍药C.发汗药D.苦寒清热药E.淡渗利湿药阴虚津亏者忌用()。
在混凝土工程中,掺入粉煤灰,硅粉可减少水泥用量,降低水化热,()混凝土裂缝的产生。
下列房地产统计指标中,属于时点指标的有()。
开户银行对本行签发的超过大额现金标准、注明“现金”字样的银行汇票、银行本票,视同大额现金支付,实行登记备案制度。()
甲食品有限公司(以下简称“甲公司”,增值税一般纳税人)。2016年2月发生下列经营业务:(1)从某农业生产者处收购花生,开具的收购凭证上注明收购价格为50000元,货物验收入库;支付某运输企业(一般纳税人)运费并取得增值税专用发票,注明运费254.56元
100个骨牌整齐地排成一列,依次编号为1、2、3、4…99、100。如果第一次拿走所有偶数位置上的牌,第二次再从剩余牌中拿走所有偶数位置上的牌,第三次再从剩余牌中拿走所有奇数位置上的牌,第四次再从剩余牌中拿走所有奇数位置上的牌,第五次再从剩余牌中拿走所有偶
求
Itisnecessaryforthevaluablespeciesto______itselfinordertostayinexistence.
最新回复
(
0
)