首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求: (1)A2. (2)矩阵A的特征值.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT.求: (1)A2. (2)矩阵A的特征值.
admin
2014-01-27
89
问题
设向量α=(a
1
,a
2
,…,a
n
)
T
,β=(b
1
,b
2
,…,b
n
)
T
都是非零向量,且满足条件α
T
β=0,记n阶矩阵A=αβ
T
.求:
(1)A
2
.
(2)矩阵A的特征值.
选项
答案
(1)A
2
=0. (2)λ
1
=λ
2
=…=λ
n
=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/HG34777K
0
考研数学二
相关试题推荐
(03年)设二次型f(χ1,χ2,χ3)=XTAX=aχ12+2χ22-2χ32+2bχ1χ3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.(1)求a,b的值;(2)利用正交变换将二次型f化为标准形,并写出所用的正
设二次型f=x12+x22+x32+2αx1x2+2βx2x3+2x1x3经正交交换X=PY化成f=y22+2y32,其中X=(x1,x2,x3)T和Y=(y1,y2,y3)T是3维列向量,P是3阶正交矩阵,试求常数α,β.
设二次型f(x1,x2,x3)=2x12-x22+ax32+2x1x2-8x1x3+2x2x3在正交变换x=Qy下的标准形为λ1y12+λ2y22,求a的值及正交矩阵Q。
[2004年]设n阶矩阵A的伴随矩阵A*≠O.若考ξ1,ξ2,ξ3,ξ4是非齐次线性方程组AX=b的互不相等的解,则对应的齐次线性方程组AX=0的基础解系().
[2002年]设函数f(u)可导,y=f(x2)当自变量x在=一1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=().
设矩阵A=,α1、α2、α3为线性无关的三维向量组,则向量组Aα1、Aα2、Aα3的秩为_______.
(94年)设A=有3个线性无关的特征向量,求χ和y应满足的条件.
随机试题
近代文坛上,魏源的文章被称为()
随着生产力的发展,在中国的春秋时期,出现了一种用来模拟和扩展手指运算功能的计算工具——__________。
GTR手术后拆线时间是
A.等价交换B.医乃仁术C.廉洁奉公D.权利、义务E.有利、公正属于医学伦理学基本范畴的是
深圳光明眼镜公司(4402913091)委托深圳圳旺国际贸易公司(4402911616)进口一批镜框材料,装载该货物的运输工具于2004年9月13日申报进境,次日由深圳巨龙报关公司向深圳海关申报。“总价”栏应填()。
某项固定资产的账面原价为80000元,预计使用年限为5年,预计净残值为5000元,按年数总和法计提折旧。若该项固定资产在使用的第3年年末,因技术陈1日等原因首次计提减值准备,金额为其当日账面价值的10%,则该项固定资产在第3年年末计提减值准备后的账面价值为
“吴门四家”出现在()。
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x一3e2x为特解,求该微分方程.
什么是网络安全?网络安全要实现的目标有哪些?
目前一般家庭中,点播电视系统的用户端必须配置的设备是()。
最新回复
(
0
)