首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. 求矩阵A的特征向量;
已知A是3阶矩阵,α1,α2,α3是线性无关的3维列向量,满足Aα1=一α1一3α2—3α3,Aα2=4α1+4α2+α3,Aα3=一2α1+3α3. 求矩阵A的特征向量;
admin
2014-02-05
76
问题
已知A是3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,满足Aα
1
=一α
1
一3α
2
—3α
3
,Aα
2
=4α
1
+4α
2
+α
3
,Aα
3
=一2α
1
+3α
3
.
求矩阵A的特征向量;
选项
答案
由(E—B)x=0得基础解系β
1
=(1,1,1)
T
,即矩阵B属于特征值λ=1的特征向量,由(2E—B)x=0得基础解系β
2
=(2,3,3)
T
,即矩阵B属于特征值λ=2的特征向量,由(3E一B)x=0得基础解系β
3
=(1,3,4)
T
,即矩阵B属于特征值λ=3的特征向量,那么令P
2
=(β
1
,β
2
,β
3
),则有P
2
BP
2
=[*]于是令P=P
1
P
2
(α
1
,α
2
,α
3
)[*]=(α
1
+α
2
+α
3
,2α
1
+3α
2
+3α
3
,α
1
+3α
2
+4α
3
),则有P
-1
AP=(P
1
P
2
)
-1
A(P
1
P
2
)=P
2
-1
(P
1
-1
AP
1
)P
2
=P
2
-1
BP
2
=[*]所以矩阵A属于特征值1,2,3的线性无关的特征向量依次为k
1
(α
1
+α
2
+α
3
),k
2
(2α
1
+3α
2
+3α
3
),k
3
(α
1
+3α
2
+4α
3
),k
i
≠0(i=1,2,3)
解析
转载请注明原文地址:https://kaotiyun.com/show/VF34777K
0
考研数学二
相关试题推荐
(11年)设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Aχ=β的3个线性无关的解,k1,k2为任意常数,则Aχ=β的通解为【】
[2010年]设已知线性方程组AX=b存在两个不同的解.求方程组AX=b的通解.
(88年)设某商品的需求量D和供给量S,各自对价格p的函数为D(p)=,S(p)=bp,且p是时间t的函数并满足方程=k[D(p)-S(p)](a、b、k为正常数),求:(1)需求量与供给量相等时的均衡价格pe;(2)当t=0,p=1时
(02年)设常数a≠,则=_______.
[2018年]设平面区域D由曲线与直线及y轴围成,计算二重积分
求微分方程y"+y’-2y=xex+sin2x的通解。
设D为xOy在平面上的有界区域,z=f(x,y)在D上连续,在D内可偏导且满足az/ax+az/ay=-z,若f(x,y)在D内没有零点,则f(x,y)在D上()。
设,讨论当a,b取何值时,方程组AX=b无解,有唯一解、有无数个解,有无数个解时求通解。
区域D由y=与x轴围成,则区域D绕x=3旋转而成的几何体的体积为V=________。
设连续函数f(x)满足求
随机试题
Tomatemorefood______wasgoodforhishealth.
降低胃内酸度作用最强的药物是
人类胚胎干细胞研究和应用的伦理原则是
某工程建筑面积35000㎡,建筑高度115m,为36层现浇框架一剪力墙前结构,地下2层;抗震设防烈度为8度,由某市建筑公司总承包,工程于2004年2月18日开工。工程开工后,由项目经理部质量负责人组织编制施工项目质量计划。问题:施工项目质量计划的编制
下列进出口许可证中实行“非一批一证”管理的是()。
In2012,thecartoonwasamongthelistoftheworld’smostvaluablecartoons,_________$3.8billionayearinsaleswoddwide.
明明知道对方的名字,但就是想不起来。这种遗忘现象可以用下列哪一理论来解释?()
中国古代四大发明对欧洲近代社会产生了重要影响,其中“替宗教改革开路,并使推广民众教育成为可能”的是()。
设总体X的密度函数为f(x)=其中θ>﹣1是未知参数X1,X2,…,Xn是来自总体X的简单随机样本.(I)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
Whatdoesthemando?
最新回复
(
0
)