首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2,α3,α4是三维非零列向量,则下列结论 ①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③若r(α1,α1+α2,α2+α3)=r
已知α1,α2,α3,α4是三维非零列向量,则下列结论 ①若α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关; ②若α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关; ③若r(α1,α1+α2,α2+α3)=r
admin
2021-10-08
4
问题
已知α
1
,α
2
,α
3
,α
4
是三维非零列向量,则下列结论
①若α
4
不能由α
1
,α
2
,α
3
线性表出,则α
1
,α
2
,α
3
线性相关;
②若α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,则α
1
,α
2
,α
4
也线性相关;
③若r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
),则α
4
可以由α
1
,α
2
,α
3
线性表出。
其中正确的个数是( )
选项
A、0。
B、1。
C、2。
D、3。
答案
C
解析
因为α
1
,α
2
,α
3
,α
4
是三维非零列向量,所以α
1
,α
2
,α
3
,α
4
必线性相关。
若α
1
,α
2
,α
3
线性无关,则α
4
必能由α
1
,α
2
,α
3
线性表示,可知结论①正确。
令α
1
=(1,0,0)T,α
2
=(0,1,0)T,α
3
=(0,2,0)T,α
4
=(0,0,1)T,则α
1
,α
2
,α
3
线性相关,α
2
,α
3
,α
4
线性相关,但α
1
,α
2
,α
4
线性无关,可知结论②错误。
由于 (α
1
,α
1
+α
2
,α
2
+α
3
)→(α
1
,α
2
,α
2
+α
3
)→(α
1
,α
2
,α
3
),
(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)→(α
4
,α
1
,α
2
,α
3
)→(α
1
,α
2
,α
3
,α
4
),
所以r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
1
,α
2
,α
3
),r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)=r(α
1
,α
2
,α
3
,α
4
),则当r(α
1
,α
1
+α
2
,α
2
+α
3
)=r(α
4
,α
1
+α
4
,α
2
+α
4
,α
3
+α
4
)时,可得r(α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
,α
4
),因此α
4
可以由α
1
,α
2
,α
3
线性表示。可知结论③正确。故选C。
转载请注明原文地址:https://kaotiyun.com/show/Oeq4777K
0
考研数学一
相关试题推荐
已知点P(1,0,-1)与点Q(3,1,2),在平面x-2y+z=12上求一点M,使得|PM|+|MQ|最小.
若f(-x)=-f(x),且在(0,+∞)内f′(x)>0,f″(x)>0,则在(-∞,0)内().
设Γ:x=x(t),y=y(t)(α<t<β)是区域D内的光滑曲线,即x(t),y(t)在(α,β)内有连续的导数且x′2(t)+y′2(t)≠0,f(x,y)在D内有连续的偏导数.若P0∈Γ是函数f(x,y)在Γ上的极值点,证明:f(x,y)在点P0沿Γ
设均为大于1的常数,则级数()
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是().
设(X,Y)的联合密度函数为(I)求常数k;(Ⅱ)求X的边缘密度;(Ⅲ)求当X=下Y的条件密度函数fY|X(y|x).
向量场A=(x2-y)i+4zj+x2k的旋度为__________.
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设有向曲面S:z=x2+y2,x≥0,z≤1,法向量与z轴正向夹角为锐角.求第二型曲面积分
随机试题
精车刀的前角和后角不能取得太小。()
中国共产党独立领导革命战争和创建人民军队的开端是()
可治疗鼻塞、鼻衄、鼻渊等多种鼻部病证的穴位为
关于招标人退还投标人投标保证金的时限,说法正确的是()。
甲股份公司有关无形资产的业务如下:(1)甲公司2017年初开始自行研究开发一项新产品专利技术,在研究开发过程中发生材料费:300万元、人工工资100万元,以及其他费用50万元,共计450万元,其中,符合资本化条件的支出为300万元,2018年1月
在常温常压下,只含C、H、O的某些有机物在足量的氧气中充分燃烧,恢复到室温后,其燃烧所消耗氧气的物质的量与燃烧后所产生气体的物质的量相等。若符合条件的物质为酚类化合物,已知该物质的一卤代物有两种(卤原子直接取代苯环上的氢原子),则该酚类化合物的结构简式
给定材料1.2016年7月19日至20日,河北省石家庄市出现连续强降雨过程,导致该市部分地区遭受不同程度的洪涝灾害。井陉县是此次暴雨洪涝重灾区,截至26日,该县33万人中有20.8万人受灾,死亡38人、失踪33人。另外,在井陉县境内修高速公路的中
(1988年)求微分方程的通解.
Thegoodharvest______thepriceofstrawberries.
Whytheamountofrubbishneedstobereduced?
最新回复
(
0
)