首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得 (e2a+ea+b+e2b)[f(ξ)+f’(ξ)]=3e3η—ξ.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得 (e2a+ea+b+e2b)[f(ξ)+f’(ξ)]=3e3η—ξ.
admin
2019-01-05
34
问题
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证:存在两点ξ,η∈(a,b),使得
(e
2a
+e
a+b
+e
2b
)[f(ξ)+f’(ξ)]=3e
3η—ξ
.
选项
答案
令g(x)=e
3x
,则g(x)=e
3x
在[a,b]上满足拉格朗日中值定理条件. 由拉格朗日中值定理,存在点η∈(a,b),使得 [*] 令F(x)=e
x
f(x),由拉格朗日中值定理,存在点ξ∈(a,b),使得 [*] 代入①式,可得(e
2a
+e
a+b
+e
2b
)[f(ξ)+f’(ξ)]=3e
3η—ξ
.
解析
(e
2a
+e
a+b
+e
2b
)[f(ξ)+f’(ξ)]=3e
3η—ξ
→(e
2a
+e
a+b
+e
2b
)e
ξ
[f(ξ)+f’(ξ)]=3e
3η
→(e
2a
+e
a+b
+e
2b
)[e
x
(x)]’|
x=ξ
=(e
3x
)|
x=η
,
先对g(x)=e
3x
用拉格朗日中值定理,再对F(x)=e
x
f(x)用拉格朗日中值定理,然后乘以常数(e
2a
+e
a+b
+e
2b
)可得待证的等式.
转载请注明原文地址:https://kaotiyun.com/show/OgW4777K
0
考研数学三
相关试题推荐
1极限式中含幂指函数(l+xlnx),首先用换底法将其化为以e为底的指数函数.
由已知条件有[*]所以原式极限为1。
求极限。
已知数列{xn}满足:x0=25,xn=arctanxn-1(n=1,2,3,…),证明{xn}的极限存在,并求其极限.
设f(x)在x=0点的某邻域内可导,且当x≠0时f(x)≠0,已知求极限
已知X1,…,Xn是来自总体X容量为n的简单随机样本,其均值和方差分别为与S2.如果总体X服从正态分布N(0,σ2),试证明:协方差Cov(X1,S2)=0.
从均值为μ,方差为σ2>0的总体中分别抽取容量为n1和n2的两个独立样本,样本均值分别记为和.试证对任意满足a+b=1的常数a、b,T=都是μ的无偏估计.并确定a、b,使D(T)达到最小.
随机试题
A.providesB.idealC.middleD.averageE.senseF.abundanceG.primarilyH.stopI.moderateJ.surviveK.d
滚动轴承与滑动轴承相比,其优点是()
赵先生已经参加了社会保险,不知道是否需要购买商业保险,于是找到助理理财规划师咨询,助理理财规划师解释不正确的是()。
税收在平等原则中,横向公平的要求为()。
电力系统中校验继电保护灵敏度的是()。
联系全文,说说最后一段画线句的含义。为此,我愿意永远是那个清晨出发,用诵读叫醒太阳的人。
许多成语源于我国古代著名的历史故事。下列成语故事发生在战国时期的是()。
A、 B、 C、 D、 D顺时针90度旋转,并且偶数项增加一小横线。
【B1】【B18】
Thegapkeepsout______.
最新回复
(
0
)