首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为 (Ⅰ)求边缘概率密度fX(x),fY(y); (Ⅱ)求条件概率密度fY|X(y|x),fX|Y(x|y); (Ⅲ)求x=12时Y的
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为 (Ⅰ)求边缘概率密度fX(x),fY(y); (Ⅱ)求条件概率密度fY|X(y|x),fX|Y(x|y); (Ⅲ)求x=12时Y的
admin
2017-01-21
66
问题
设以X表示某一推销员一天花费在汽油上的款项(以美元计),以Y表示推销员一天所得的补贴(以美元计),已知X和Y的联合概率密度为
(Ⅰ)求边缘概率密度f
X
(x),f
Y
(y);
(Ⅱ)求条件概率密度f
Y|X
(y|x),f
X|Y
(x|y);
(Ⅲ)求x=12时Y的条件概率密度;
(Ⅳ)求条件概率P{y≥8|X=12}。
选项
答案
(Ⅰ)如图3—3—5所示 [*] (Ⅱ)(1)当10<x<20时,f
X
(x)≠0,条件概率密度f
Y|X
(y|x)存在。 (2)当10<x<20时,有 [*] (3)当5<y<10或10≤y<20,f
Y
(y)≠0,f
X,Y
(x|y)存在。当5<y<10时, [*] f
X|Y
(x|y)是单个自变量x的函数,y是一个固定值。 (Ⅲ)当x=12时Y的条件概率密度为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OhH4777K
0
考研数学三
相关试题推荐
曲线渐近线的条数为().
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0,试证函数在[0,+∞)上连续且单调不减(其中n>0).
一台设备由三大部分构成,在设备运转中各部件需要调整的概率相应为0.10,0.20和0.30,假设各部件的状态相互独立,以X表示同时需要调整的部件数.试求X的概率分布、数学期望E(X)和方差D(X).
证明下列不等式:(1)nbn-1(a-b)<an-bn<nan-1(a-b)(a>b>0,n>1);(2)(a>b>0).
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn,则根据列维.林德伯格(Levy-Lindherg)中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn
设随机变量X和Y的相关系数为0.5,EX=EY=0,EX2=EY2=2,则E(X+Y)2=__________.
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤1}=
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2的秩为2.求厅程f(x1,x2,x3)=0的解.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
随机试题
政策维持的终极手段是()
男性,48岁,反复发热40余天。体检:无贫血貌,皮肤黏膜无出血点,无黄染,双颌下、颈旁、腋下淋巴结肿大,无触痛,胸骨无压痛,肝脾肋下未触及;血红蛋白128g/L,白细胞6.8×109/L,血小板118×109/L,外周血涂片白细胞分类正常。为明确诊断,
A、酸枣仁B、远志C、合欢皮D、夜交藤E、柏子仁功能养心安神,润肠通便的药物是
划定的基本农田保护区,由()设立保护标志,予以公告。
若某项目的动态投资回收期恰好等于该项目的计算期,则()。
某铁路客运专线铁路工程,采用CRTSⅡ型板式无砟轨道。施工过程中,由于建设单位赶工期,施工单位组织不力,造成部分无砟轨道返工,影响工期1个月,造成直接经济损失为250万元人民币。问题:客运专线铁路轨道工程的质量管理措施有哪些?
若信用证未表示禁止转船和分批装运,应理解为不许转船,但可以分批装运。()
单击一次命令按钮,下列程序代码的执行结果为()。PrivateSubCommand1_Click()DimaAsInteger,bAsInteger,cAsIntegera=2:b=3:c=4
What’sthemaintopicofthispassage?
Inthelate20thcentury,informationhasacquiredtwomajorutilitarianconnotations.Ontheonehand,itisconsideredanecon
最新回复
(
0
)