首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
α1,α2,αs线性无关( ).
α1,α2,αs线性无关( ).
admin
2018-06-27
40
问题
α
1
,α
2
,α
s
线性无关
( ).
选项
A、存在全为零的实数k
1
,k
2
,k
r
,使得k
1
α
1
,k
2
α
2
,k
r
α
s
=0.
B、存在不全为零的实数k
1
,k
2
,k
r
,使得k
1
α
1
,k
2
α
2
,k
r
α
s
≠0.
C、每个α
i
都不能用其他向量线性表示.
D、有线性无关的部分组.
答案
C
解析
(A)不对,当k
1
=k
2
=…=k
r
=0时,对任何向量组α
1
,α
2
,α
r
k
1
α
1
+k
2
α
1
+k
r
α
s
=0都成立.
(B)不对,α
1
,α
2
,α
r
线性相关时,也存在不全为零的实数k
1
,k
2
,k
r
,使得k
1
α
1
+k
2
α
1
+k
r
α
r
≠0;
(C)就是线性无关的意义.
(D)不对,线性相关的向量组也可能有线性无关的部分组.
转载请注明原文地址:https://kaotiyun.com/show/Oik4777K
0
考研数学二
相关试题推荐
已知曲线在直角坐标系中由参数方程给出:证明该方程确定连续函数y=y(x),x∈[0,+∞);
函数的值域区间是__________.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.把向量β分别用α1,α2,α3,α4和它的极大线性无关组线性表出.
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求a的值;
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是η1=(1,3,0,2)T,η2=(1,2,一1,3)T,又知齐次方程组Bx=0的基础解系是β1=(1,1,2,1)T,β2=(0,一3,1,α)T,)如果齐次线性方程组Ax=0与BBx=0有非零公共解
设x=Fcosθ,y=rsinθ.则直角坐标系xOy中的累次积分可化为极坐标系(r,θ)中的累次积分是____________.
(I)设A,B是n阶矩阵,A有特征值λ=1,2,…,n.证明:AB和BA有相同的特征值,且AB~BA;(II)对一般的n阶矩阵A,B,是否必有AB~BA?说明理由.
设3维向量组α1,α2线性无关,β1,β2线性无关.证明:存在非零3维向量ξ1,ξ2既可由α1,α2线性表出,也可由β1,β2线性表出;
设ξ1=[1,3,一2]T,ξ2=[2,一1,3]T是Ax=0的基础解系,Bx=0和Ax=0是同解方程组,η=[2,a,b]T是方程组的解,则η=_________.
设A的特征值,特征向量;
随机试题
扩孔的进给量为钻孔的()倍。
函数y=的定义域是()
非晶硒FPD的优点不包括
治疗小儿佝偻病、成人骨软化病的物理疗法是
腹中有结块,推之可移,疼痛部位不固定的是
李某花5000元购得摩托车一辆,半年后,其友王某提出借用摩托车,李同意。王某借用数周不还,李某碍于情面,一直未讨还。某晚,李某乘王某家无人,将摩托车推回。次日,王某将摩托车丢失之事告诉李某,并提出用4000元予以赔偿。李某故意隐瞒真情,称:“你要赔就赔吧。
停车数量不大于()辆的汽车库,以及室内无车道且无人员停留的机械式汽车库应设置消防应急照明和疏散指示标志。
下列关于村集体经济组织银行存款的说法,错误的是()。
交叉持股,是指在由母公司和子公司组成的企业集团中,母公司持有子公司一定比例股份。能够对其实施控制,同时子公司也持有母公司一定比例股份。()
已知短期国库券利率为6%,纯粹利率为5%,市场利率为8%,则通货膨胀补偿率为()。
最新回复
(
0
)