首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
admin
2019-08-28
45
问题
设向量组α
1
,α
2
,α
3
线性无关,证明:α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
选项
答案
方法一 令k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
)=0,即 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以有 [*] 而D=[*](i-j)=2≠0,由克拉默法则得k
1
=k
2
=k
3
=0, 所以α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关. 方法二 令A=(α
1
,α
2
,α
3
),B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
), 则B=[*]可逆,所以r(B)=r(A)=3, 故α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/OlJ4777K
0
考研数学三
相关试题推荐
设X1,X2,…,Xn兄是来自总体X的简单随机样本.已知EXk=ak(k=1,2,3,4),证明当n充分大时,随机变量Zn=近似服从正态分布,并指出其分布参数.
设随机变量X与Y相互独立,且都服从区间(0,1)上的均匀分布,则P{X2+Y2≤1}=
(2016年)设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性p为单价(万元).(Ⅰ)求需求函数的表达式;(Ⅱ)求p=100万元时的边际收益,并说明其经济意义.
(2012年)证明:
(2002年)设常数=______.
k为何值时,线性方程组有唯一解、无解、有无穷多组解?在有解情况下,求出其全部解.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:矩阵A的特征值和特征向量.
设3阶方阵A的特征值λ1,λ2,λ3互不相同,α1,α2,α3依次为对应于λ1,λ2,λ3的特征向量,则向量组α1,A(α1+α2),A2(α1+α2+α3)线性无关的充分必要条件是λ1,λ2,λ3满足_______.
设随机变量X在区间(-1,1)上服从均匀分布,Y=X2,求(X,Y)的协方差矩阵和相关系数.
在随机地抛掷两枚均匀骰子的独立重复试验中,求两枚骰子点数和为5的结果出现在它们的点数和为7的结果之前的概率.
随机试题
Cisco路由器支持NAT。在路由器上配置NAT的优势在于()。
针对土的矿物成分,在地壳中由岩浆冷凝而成的天然元素或化合物,称()矿物,其粒径相对比较()
基坑监测点水平间距不宜大于()m,每边监测点数不宜少于()个。
不属于合同可撤销的原因的是()。
下列表述中,符合城建税有关规定的是()。
案例下面是某求助者的WAIS-RC的测验结果:对于WAIS-RC,正确的说法包括()
结合犯,是指数个各自独立的犯罪行为,根据刑法的明文规定,结合而成为另一个独立的新罪的犯罪形态。根据定义,下列属于结合犯的是()。
创伤后成长:指一个人在经历重大的生活挫折之后发生的积极性改变。下列属于创伤后成长的是()。
下列叙述中错误的是()
Afewyearsagoitwas【B1】______tospeakofagenerationgap,adivisionbetweenyoungpeopleandtheirelders.Parents【B2】____
最新回复
(
0
)