首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
设向量组α1,α2,α3线性无关,证明:α1+α2+α3,α1+2α2+3α3,α1+4α2+9α3线性无关.
admin
2019-08-28
59
问题
设向量组α
1
,α
2
,α
3
线性无关,证明:α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
选项
答案
方法一 令k
1
(α
1
+α
2
+α
3
)+k
2
(α
1
+2α
2
+3α
3
)+k
3
(α
1
+4α
2
+9α
3
)=0,即 (k
1
+k
2
+k
3
)α
1
+(k
1
+2k
2
+4k
3
)α
2
+(k
1
+3k
2
+9k
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以有 [*] 而D=[*](i-j)=2≠0,由克拉默法则得k
1
=k
2
=k
3
=0, 所以α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关. 方法二 令A=(α
1
,α
2
,α
3
),B=(α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
), 则B=[*]可逆,所以r(B)=r(A)=3, 故α
1
+α
2
+α
3
,α
1
+2α
2
+3α
3
,α
1
+4α
2
+9α
3
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/OlJ4777K
0
考研数学三
相关试题推荐
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
求x[1+yf(x2+y2)]dxdy,其中D是由y=x3,y=1,x=一1所围成的区域,f(x,y)是连续函数.
设z=f(exsiny,x2+y2),其中f具有二阶连续偏导数,求
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一的解,并在此时求x1;
设A是3阶方阵,A*是A的伴随矩阵,A的行列式|A|=1/2,求行列式|(3A)-1-2A*|的值.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=_______.
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTβ=0.记n阶矩阵A=αβT.求:矩阵A的特征值和特征向量.
行列式的第4行各元素的余子式之和的值为_______.
设有4阶方阵A满条件|I+A|=0,AAT=2I,|A|<0,其中I是4阶单位矩阵.求A的伴随矩阵A*的一个特征值.
设二次方程x2—Xx+Y=0的两个根相互独立,且都在(0,2)上服从均匀分布,分别求X与Y的概率密度.
随机试题
Ofthetwotoys,thechildchose______.()
A.行气豁痰B.补养气C.顺气开郁D.补气回阳气厥实证的治法是
肠球菌败血症可选用的抗菌药物联合为
下列哪种细菌属于无芽孢厌氧菌
下面属于次高级路面的路面结构是()。
下列关于上市公司发行新股申请过程中信息披露的表述中,正确的有()。Ⅰ.股东大会通过本次发行议案之日起两个工作日内,上市公司应当公布股东大会决议Ⅱ.上市公司收到中国证监会关于本次发行申请的不予核准决定后,应当在两个工作日内予以公告
_______的建立是学生健康和谐发展的重要保证,是实施素质教育、提高教育质量的重要条件。
正当防卫,是指为了使国家、公共利益,本人或者他人的人身、财产和其他权利免受正在进行的不法侵害,而对不法侵害者所实施的有限度的行为。根据以上定义,下列属于正当防卫的是()
以下关于光纤的说法中,错误的是()。
Thereisneveragoodtimetohaveaheartattack,butthewisepersonafflictedwithcloggingarteries(动脉堵塞)mightwanttobees
最新回复
(
0
)