首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.
admin
2018-07-26
36
问题
设α
1
=(1,1,1),α
2
=(1,2,3),α
3
=(1,3,t)
(1)问当t为何值时,向量组α
1
,α
2
,α
3
线性无关?
(2)问当t为何值时,向量组α
1
,α
2
,α
3
线性相关?
(3)当向量组α
1
,α
2
,α
3
线性相关时,将α
3
表示为α
1
和α
2
的线性组合.
选项
答案
1 由于行列式 [*] 所以,当t≠5时,D≠0,此时向量组α
1
,α
2
,α
3
线性无关; 当t=5时,D=0,此时向量组α
1
,α
2
,α
3
线性相关. 当t=5时,对矩阵[α
1
T
α
2
T
[*]α
3
T
]作初等行变换: [α
1
T
α
2
T
[*]α
3
T
] [*] 由此即知α
3
=-α
1
+2α
2
. 2 对矩阵A=[α
1
T
α
2
T
α
3
T
]作初等行变换: [*] 由此可知,当t≠5时,r(A)=3,此时向量组α
1
,α
2
,α
3
线性无关;当t=5时,r(A)=2,此时向量组α
1
,α
2
,α
3
线性相关,此时,有 [*] 于是得α
3
=-α
1
+2α
2
.
解析
本题主要考查向量组的线性相关性与向量组所构成矩阵的秩的关系,以及如何求解线性表示的问题.注意,向量β由向量组α
1
,…,α
n
线性表示的问题,等价于一个非齐次线性方程组的问题,这个方程组的增广矩阵为
转载请注明原文地址:https://kaotiyun.com/show/ZTW4777K
0
考研数学三
相关试题推荐
求微分方程ydx+(xy+x-ey)dy=0的通解.
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
证明n维列向量α1,α2,…,αn线性无关的充要条件是
设A是n×m矩阵,B是m×n矩阵,其中n<m,若AB=E,证明B的列向量线性无关.
若α1=(1,0,5,2)T,α2=(3,-2,3,-4)T,α3=(-1,1,t,3)T线性相关,则t=______.
如果秩r(α1,α2,…,αs)=r(α1,α2,…,αs,αs+1),证明αs+1可由α1,α2,…,αs线性表出.
已知α1=(1,2,3,4)T,α2=(2,0,-1,1)T,α3=(6,0,0,5)T,则向量组的秩r(α1,α2,α3)=_______,极大线性无关组是_______.
曲线y=的渐近线方程为_______.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时.求正交矩阵Q,使Q-1AQ=A.
求曲线上点(0,0)处的切线方程.
随机试题
求由曲线y=x2与x=2,y=0所围成图形分别绕x轴,y轴旋转一周所生成的旋转体的体积.
产后“三急”是指()
关联方关系存在形式中的关系密切的家庭成员包括父母,配偶,兄弟,姐妹和子女。()
幼儿教师在教授动作示范时往往采用“镜面示范”,原因是()。
2019年6月12日,李克强总理主持召开国务院常务会议,会议指出,以企业为主体,拓展多元化国际市场。有利于促进外贸稳中提质和经济平稳运行。()
A、27B、8C、21D、18D此题答案为D。每行前两个数字之差除以3等于第三个数。(63-9)÷3=(18)。
由元素序列(27,16,75,38,51)构造平衡二叉树,则首次出现的最小不平衡子树的根(即离插入结点最近且平衡因子的绝对值为2的结点)是()。
桌球就是台球。几乎所有人都知道丁俊晖是台球高手,但很少有人知道丁俊晖是桌球高手。以下哪项陈述能最有效地解决上文中的不一致之处?
Newresearchontechnologyandpublicpolicyfocusesonhowseemingly(i)____designfeatures,generallyoverlookedinmostanal
A、SportsintheUnitedStates.B、ThemostpopularsportsintheUnitedSports.C、ThreepopularsportsintheUnitedStates.D、Sp
最新回复
(
0
)