首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t) (1)问当t为何值时,向量组α1,α2,α3线性无关? (2)问当t为何值时,向量组α1,α2,α3线性相关? (3)当向量组α1,α2,α3线性相关时,将α3表示为α1和α2的线性组合.
admin
2018-07-26
24
问题
设α
1
=(1,1,1),α
2
=(1,2,3),α
3
=(1,3,t)
(1)问当t为何值时,向量组α
1
,α
2
,α
3
线性无关?
(2)问当t为何值时,向量组α
1
,α
2
,α
3
线性相关?
(3)当向量组α
1
,α
2
,α
3
线性相关时,将α
3
表示为α
1
和α
2
的线性组合.
选项
答案
1 由于行列式 [*] 所以,当t≠5时,D≠0,此时向量组α
1
,α
2
,α
3
线性无关; 当t=5时,D=0,此时向量组α
1
,α
2
,α
3
线性相关. 当t=5时,对矩阵[α
1
T
α
2
T
[*]α
3
T
]作初等行变换: [α
1
T
α
2
T
[*]α
3
T
] [*] 由此即知α
3
=-α
1
+2α
2
. 2 对矩阵A=[α
1
T
α
2
T
α
3
T
]作初等行变换: [*] 由此可知,当t≠5时,r(A)=3,此时向量组α
1
,α
2
,α
3
线性无关;当t=5时,r(A)=2,此时向量组α
1
,α
2
,α
3
线性相关,此时,有 [*] 于是得α
3
=-α
1
+2α
2
.
解析
本题主要考查向量组的线性相关性与向量组所构成矩阵的秩的关系,以及如何求解线性表示的问题.注意,向量β由向量组α
1
,…,α
n
线性表示的问题,等价于一个非齐次线性方程组的问题,这个方程组的增广矩阵为
转载请注明原文地址:https://kaotiyun.com/show/ZTW4777K
0
考研数学三
相关试题推荐
设某商品的需求量Q是单价P(单位:元)的函数Q=12000-80P;商品的总成本C是需求量Q的函数C=25000+50Q;每单位商品需要纳税2元,试求使销售利润最大的商品单价和最大利润额.
设f(x)在(-∞,+∞)连续,存在极限.证明:(Ⅰ)设A<B,则对∈(-∞,+∞),使得f(ξ)=μ;(Ⅱ)f(x)在(-∞,+∞)上有界.
给出满足下列条件的微分方程:(I)方程有通解y=(C1+C2x+x-1)e-x;(Ⅱ)方程为二阶常系数非齐次线性方程,并有两个特解
假设排球运动员的平均身高(单位:厘米)为μ,标准差为4.求100名排球运动员的平均身高与所有排球运动员平均身高之差在(-1,1)内的概率.
设A是m×n矩阵,B是n×P矩阵,如AB=0,则r(A)+r(B)≤n.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
向量组α1=(1,0,1,2)T,α2=(1,1,3,1)T,α3=(2,-1,a+1,5)T线性相关,则a=_______.
计算行列式Dn=之值.
已知矩阵A=有特征值λ=5,求a的值;并当a>0时.求正交矩阵Q,使Q-1AQ=A.
将一均匀的骰子连续扔六次,所出现的点数之和为X,用切比雪夫不等式估计P(14<X<28)=________.
随机试题
卫氏并殖吸虫病华支睾吸虫病
日龄6天,起病2日,不吃奶,精神弱,面色差,体温37摄氏度,呼吸急促,皮肤黄染,心肺正常,脐带未脱落,脐根部有少量稀薄分泌物,肝肋下3cm,脾肋下1cm,血清胆红素14mg/dl(23.4μmol/L),间接胆红素为主,诊断最大可能是
患者,女,30岁。有风湿性关节炎病史。检查:心尖部可听到Ⅳ级收缩期杂音。X线显示左心房、左心室增大。应首先考虑的心瓣膜病变是
下列隧道现场监控量测项目中,属于必测项目的是()。
下列有关或有事项经济业务的表述中,正确的有()。
以下对于团体签证的表述错误的是()。
民主集中制是我国人民代表大会制度的根本组织和活动原则。()
a=2或a=-1(1)多项式x3+a2x2+ax-1含有因式(x+1).(2)设0≤x≤3,则函数y=(x-2)2-2的最大值为a.
Murphy’sLawsuggests,“Ifanythingcangowrong,itwill.”Murphyhasmotivatednumerouspearlsofwisdomaboutprojects,machines,
在线程的基本控制中,哪个方法使比其低的优先级线程先运行?
最新回复
(
0
)