首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上二阶可导,且f(a)=f(b),f″(x)≠0,则( ).
设f(x)在[a,b]上二阶可导,且f(a)=f(b),f″(x)≠0,则( ).
admin
2019-06-06
45
问题
设f(x)在[a,b]上二阶可导,且f(a)=f(b),f″(x)≠0,则( ).
选项
A、f′(x)在(a,b)内没有零点
B、f′(x)在(a,b)内只有一个零点
C、f′(x)在(a,b)内至少有一个零点
D、f′(x)在(a,b)内零点个数不能确定
答案
B
解析
因f(a)=f(b),首选罗尔定理证之,再用反证法证明f′(x)只有一个零点.
解 因为f(x)在[a,b]上连续,(a,b)内可导,f(a)=f(b),由罗尔定理知,至少存在ξ∈(a,b),使得
f′(ξ)=0.
如果f′(x)在(a,b)内有两个零点ξ
1
,ξ
2
(ξ
1
≠ξ
2
),则函数f′(x)在[ξ
1
,ξ
2
]上仍满足罗尔定理条件,则在ξ
1
,ξ
2
之间存在已,使
f″(ξ
3
)=0,
这与在[a,b]上.f″(x)≠0矛盾.
转载请注明原文地址:https://kaotiyun.com/show/OqV4777K
0
考研数学二
相关试题推荐
设实对称矩阵求可逆矩阵P,使P一1AP为对角矩阵,并计算行列式|A—E|的值.
设线性方程组m,n取何值时,方程组(Ⅰ)与(Ⅱ)同解.
求极限:
已知f(χ)在[0,2]上二阶连续可微,f(1)=0,证明:|∫02f(χ)dχ|≤,其中M=|f〞(χ)|.
设λ1,λ2是n阶矩阵A的两个不同特征值,χ1、χ2分别是属于λ1、λ2的特征向量.证明:χ1+χ2不是A的特征向量.
求函数y=(x一1)的单调区间和极值,并求该函数图形的渐近线。
曲线y=的斜渐近线方程为_________。
如图,曲线C的方程为y=f(x),点(3,2)是它的一个极点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4)。设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx。
求微分方程y’’一a(y’)2=0(a>0)满足初始条件y|x=0=0,y’|x=0=一1的特解.
设exsin2x为某n阶常系数线性齐次微分方程的一个解,则该方程的阶数n至少是__________,该方程为__________.
随机试题
函数y=lnarcsinx的连续区间为___________.
血友病关节炎,正确的摄影体位是
甲硝唑支链氨基酸
男性,40岁,突起眩晕,频繁呕吐,枕部疼痛。查体:颈项强直,左侧周围性面瘫,右侧共济失调,眼球震颤。该患者最可能的疾病是
根据《企业会计准则第36号一关联方披露》的规定,下列表述正确的有()。
遇到问题时,导游不应对旅游者进行直接、正面的说服,而应采用间接或旁敲侧击的方式进行劝说,这种说服方式称之为()。
在培训过程中(),是使培训工作取得成功的关键之举。
三间房社区于2016年7月1日下午,在小区内联合社区幼儿园共同举办了有关家庭教育知识的讲座——“原生家庭”早教知识讲座。此次活动社区请到了朝阳区教育分院的专家苑媛老师来为广大居民进行讲解。讲座的内容重点围绕典型家庭的案例剖析,强调每一对父母都是孩子的原生家
水力:煤炭:发电
以下ASCII码值最大的是
最新回复
(
0
)