首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶非零矩阵,∣A∣为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则∣A∣=_______.
设A=(aij)是3阶非零矩阵,∣A∣为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则∣A∣=_______.
admin
2021-01-25
33
问题
设A=(a
ij
)是3阶非零矩阵,∣A∣为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则∣A∣=_______.
选项
答案
一1
解析
由A≠O,不妨设A
11
≠0,由已知的A
ij
=一a
ij
(i,j=1,2,3),得
及A=一(A
*
)
T
,其中A
*
为A的伴随矩阵.以下有两种方法:
方法1:用A
T
右乘A=一(A
*
)
T
的两端,得
AA
T
=一(A
*
)A
T
=一(AA
*
)
T
=一(∣A∣I)
T
,其中I为3阶单位矩阵,上式两端取行列式,得
∣A∣
2
=(一1)
3
∣A∣
3
,或∣A∣
2
(1+∣A∣)=0,因∣A∣≠0,所以∣A∣=一1.
方法2:从A=一(A
*
)
T
两端取行列式,并利用∣A
*
∣=∣A∣
2
,得
∣A∣=(一1)
3
∣A
*
∣=一∣A∣
2
,或∣A∣(1+∣A∣)=0,因∣A∣≠0,所以∣A∣=一1.
本题综合考查行列式的计算和伴随矩阵的有关概念.本题要求方阵A的行列式,需要建立关于方阵A的等式,所以将已知的9个数相等的条件A
ij
=一a
ij
(i,j=1,2,3)转化成两个3阶方阵相等: A=一(A
*
)
T
,这是本题求解的关键.还应注意在处理有关伴随矩阵的问题时,伴随矩阵的定义及基本公式AA
*
=A
*
A=∣A∣I是两个基本出发点.本题还用到方阵行列式及伴随矩阵行列式的其它常用性质,如:∣A
T
∣=∣A∣,∣AB∣=∣A∣∣B∣(A,B为同阶方阵),∣kA∣=k∣A∣(k为常数),∣A
*
∣=∣A∣
n-1
(A为,n阶方阵).
转载请注明原文地址:https://kaotiyun.com/show/Orx4777K
0
考研数学三
相关试题推荐
(1992年)求连续函数f(x),使它满足f(x)+2∫0xf(t)dt=x2
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
设X1,X2,…,X100相互独立且在区间[一1,1]上同服从均匀分布,则由中心极限定理≈________.
设f(x)为连续函数,a与m是常数且a>0,将二次积分I=∫0ady∫0yem(a-x)f(x)dx化为定积分,则I=_________.
设总体X~N(2,42),从总体中取容量为16的简单随机样本,则
已知某自动生产线加工出的产品次品率为0.01,检验人员每天检验8次,每次从已生产出的产品中随意取10件进行检验,如果发现其中有次品就去调整设备,那么一天至少要调整设备一次的概率为______.(0.9980≈0.4475)
积分∫aa+2πcosχln(2+cosχ)dχ的值().
反常积分
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)(1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ(2)利用(1)的结论计算定积分|si
求极限
随机试题
甲公司生产某种产品的固定成本是30万元,该产品单位变动成本为4元,市场售价为10元,若要达到6万元销售毛利的目标,该产品产销量应为()
绒毛膜癌经血行最常转移到
药物警戒是指发现、评价、认识和预防药品不良作用或其他任何与药物相关问题的科学研究和活动,下列属于药物警戒工作内容是
男性,35岁。血压180/100mmHg,经服硝苯地平及血管紧张素转换酶抑制剂治疗3周后,血压降至120/80mmHg,关于停药问题应是
会计从业资格管理办法规定( )。
如果一经济体接受的来自国外的转移大于其对国外的转移,则其国民可支配收入小于国民总收入,反之则反。()
具有高科技含量、高文化附加值特征的各类创新型产业所形成的经济形态可以被称为()。
把感觉、经验当成第一性的观点是主观唯心主义。()
某城市恰好有5条地铁线:L1,L2,L3,L4和L5。在每条线上,火车都双向运行,且在每站必停。(1)L1是条环线,恰好把7个车站连接起来,它们在一个方向上的顺序是:R→T→F→S→U→Q→P→R,在另一个方向上的顺序与此相反;(2)L2把T和S连接起
【B1】【B16】
最新回复
(
0
)