首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
admin
2018-06-14
68
问题
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
选项
答案
由题设f(x)在x=a处n阶可导且[*]=A≠0知,把f(x)在x=a的带皮亚诺余项的n阶泰勒公式代入即得 [*] 从而 f(a)=f’(a)=f"(a)=…=f
(n—1)
(a)=0,f
(n)
(a)=n!A≠0. 设g(x)=f’(x),由题设知g(x)在x=a处n一1阶可导,且 g(a)=f’(a)=0,g’(a)=f"(a)=0,…,g
(n—2)
(a)=f
(n—1)
(a)=0, g
(n—1)
(a)=f
(n)
(a)=n!A≠0. 由此可得f’(x)=g(x)在x=a处带皮亚诺余项的n一1阶泰勒公式为 f’(x)=g(x)=g(a)+g’(a)(x一a)+…+[*](x一a)
n—2
+[*](x—a)
n—1
+ο(x一a)
n—1
=[*](x一a)
n—1
+ο((x一a)
n—1
=nA(x一a)
n—1
+ο((x一a)
n—1
), 故f’(x)当x→a时是x一a的n一1阶无穷小量.
解析
转载请注明原文地址:https://kaotiyun.com/show/P2W4777K
0
考研数学三
相关试题推荐
[*]
求微分方程y"+y=x2+3+cosx的通解.
求y"一2y’一e2x=0满足初始条件y(0)=1,y’(0)=1的特解.
设直线y=kx与曲线y=所围平面图形为D1,它们与直线x=1围成平面图形为D2.求此时的D1+D2,
设y=ex为微分方程xy’+P(x)y=x的解,求此微分方程满足初始条件y(ln2)=0的特解.
举例说明多元函数连续不一定可偏导,可偏导不一定连续.
某个人参加跳高项目的及格选拔赛,规定一旦跳过指定高度就被认为及格而被入选,但是限制每人最多只能跳6次.若6次均未过竿,则认定其为落选.如果一位参试者在该指定高度的过竿率为0.6,求他在测试中所跳次数的概率分布.
设f(x)在x=0的某邻域内有连续的一阶导数,且f’(0)=0,f’’(0)存在.求证:
设随机事件A,B及A∪B的概率分别为0.4,0.3和0.6,则P(AB)=________.
随机试题
新闻单位开展公共关系工作有两大优势,一是这些单位深受社会公众瞩目,二是这些单位【】
下列哪一项不属于大剂量静脉肾盂造影的禁忌证
下列药物中属于单环β-内酰胺类的是
建设项目中所需要的原辅材料、能源的供应、生活设施的依托条件以及施工条件等,称为()。
目前,商业银行推出的固定收益类理财产品的投资范围一般不包括()。
在我国实现共同富裕的目标体现着()。
简述自我效能感的基本含义及其提高措施。
以汪峰为代表的中国新摇滚音乐人,在21世纪的第一个十年迅速崛起。汗峰于2013年开始,在中国15个城市进行了巡演。根据最新数据,汪峰本人在2014年的音乐总票房更飙升至1.39亿元。在“2014年度演唱会票房排行榜”当中,汪峰以1.39亿元的票房位列第二,
有如下类模板定义:templateclassBigNumber{longn;public:BigNumber(Ti):n(i){}BigNumberoperator+(BigNumberb
"GeothermalEnergy"GeothermalenergyisnaturalheatfromtheinterioroftheEarththatisconvertedtoheatbuildingsand
最新回复
(
0
)