首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
admin
2018-06-14
43
问题
设f(x)在x=a处n阶可导(n≥2),且当x→a时f(x)是x一a的n阶无穷小量.求证;f(x)的导函数f’(x)当x→a时是x一a的n一1阶无穷小量.
选项
答案
由题设f(x)在x=a处n阶可导且[*]=A≠0知,把f(x)在x=a的带皮亚诺余项的n阶泰勒公式代入即得 [*] 从而 f(a)=f’(a)=f"(a)=…=f
(n—1)
(a)=0,f
(n)
(a)=n!A≠0. 设g(x)=f’(x),由题设知g(x)在x=a处n一1阶可导,且 g(a)=f’(a)=0,g’(a)=f"(a)=0,…,g
(n—2)
(a)=f
(n—1)
(a)=0, g
(n—1)
(a)=f
(n)
(a)=n!A≠0. 由此可得f’(x)=g(x)在x=a处带皮亚诺余项的n一1阶泰勒公式为 f’(x)=g(x)=g(a)+g’(a)(x一a)+…+[*](x一a)
n—2
+[*](x—a)
n—1
+ο(x一a)
n—1
=[*](x一a)
n—1
+ο((x一a)
n—1
=nA(x一a)
n—1
+ο((x一a)
n—1
), 故f’(x)当x→a时是x一a的n一1阶无穷小量.
解析
转载请注明原文地址:https://kaotiyun.com/show/P2W4777K
0
考研数学三
相关试题推荐
=________.
求∫01xarctanxdx.
设f(x)为连续函数,证明:∫0πxf(sinx)dx=
设变换可把方程,求常数a.
求下列极限:
设f(x)=验证f(x)在[0,2]上满足拉格朗日中值定理的条件,求(0,2)内使得f(2)一f(0)=2f’(ξ)成立的ξ.
已知n元齐次线性方程组A1x=0的解全是A2x=0的解,证明A2的行向量可以由A1的行向量线性表出.若线性方程组(Ⅰ)A1x=b1和(Ⅱ)A2x=b2都有解,且(Ⅰ)的解全是(Ⅱ)的解,则(A2,b2)的行向量组可以由(A1,b1)的行向量组线
设an>0,n=1,2,…,若收敛,则下列结论正确的是
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且=M.证明:f’(x0)=M.
设函数f(x)在x=a的某邻域内有定义,则f(x)在x=a处可导的一个充分条件是()
随机试题
2009年8月20日,A公司向B公司签发了一张金额为10万元的商业汇票,该汇票载明出票后1个月内付款。C公司为付款人,D公司在汇票上签章作了保证,但未记载被保证人名称。B公司取得汇票后背书转让给E公司,E公司又将该汇票背书转让给F公司,F公司于9月1
出口应税消费品的消费税退税率为该应税消费品的消费税税率。()(2003年)
下列选项中,水环境现状调查和监测过程中调查时间确定原则说法正确的是()。
依据《建设工程质量管理条例》,( )在建设工程竣工验收后,应及时向建设行政主管部门或者其他有关部门移交建设项目档案。
潜在GDP总是大于实际GDP。()
设备的选择一般取决于生产工艺流程和生产规模的要求,以及对设备在技术、工艺等方面的要求。()
从所给的四个选项中,选择最合适的—个填入问号处,使之呈现—定的规律性。()
以下说法正确的是()。
=________.
Thereisnodoubtthat______(我们的教育体系令人不满意).
最新回复
(
0
)