首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+26)T,β=(1,3,-3)T,试讨论当a,b为何值时, (Ⅰ)β不能由α1,α2,α3线性表示; (Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表
设α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+26)T,β=(1,3,-3)T,试讨论当a,b为何值时, (Ⅰ)β不能由α1,α2,α3线性表示; (Ⅱ)β可由α1,α2,α3惟一地线性表示,并求出表
admin
2016-06-30
53
问题
设α
1
=(1,2,0)
T
,α
2
=(1,a+2,-3a)
T
,α
3
=(-1,-b-2,a+26)
T
,β=(1,3,-3)
T
,试讨论当a,b为何值时,
(Ⅰ)β不能由α
1
,α
2
,α
3
线性表示;
(Ⅱ)β可由α
1
,α
2
,α
3
惟一地线性表示,并求出表示式;
(Ⅲ)β可由α
1
,α
2
,α
3
线性表示,但表示式不惟一,并求表示式.
选项
答案
设有一组数χ
1
,χ
2
,χ
3
,使得 χ
1
α
1
+χ
2
α
2
+χ
3
α
3
=β (*) 对方程组(*)的增广矩阵施行初等行变换: [*] (1)当a=0,b为任意常数时,有 [*] 可知r(A)≠r([*]),故方程组(*)无解,β不能由α
1
,α
2
,α
3
线性表示. (2)当a≠0,且a≠b时,r(A)=r([*])=3,方程组(*)有唯一解:[*],χ
3
=0.故此时β可由α
1
,α
2
,α
3
唯一地线性表示为:β=[*] (3)当a=b≠0时,对[*]施行初等行变换: [*] 可知r(A)=r([*])=2,故方程组(*)有无穷多解,通解为[*],χ
3
=c,其中c为任意常数.故此时β可由α
1
,α
2
,α
3
线性表示,但表示式不唯一,其表示式为β=[*]α
2
+cα
3
.
解析
转载请注明原文地址:https://kaotiyun.com/show/P9t4777K
0
考研数学二
相关试题推荐
设f(x)=在x=0处连续,则a=________.
若A,B同时发生,则C发生.证明:P(C)≥P(A)+P(B)-1.
设总体x~U(θ1,θ2),X1,X2,…,Xn是来自总体X的样本,求θ1,θ2的矩估计值和最大似然估计值.
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
设随机变量X和Y相互独立,且分布函数为FX(x)=令U=X+Y,则U的分布函数为________.
试证明:若f(x)在[a,b]上存在二阶导数,且f’(a)=f’(b)=0,则存在ξ∈(a,b),使得
设函数y=y(x)由方程2y3-2y2+2xy-x2=1所确定,试求y=y(x)的驻点,并判定它是否为极值点.
讨论在(0,0)点的连续性。
设A,B均为n阶矩阵,若E-AB可逆,证明E-BA可逆.
(2002年试题,十二)已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
随机试题
腹部九分法,下水平线为
木门窗五金配件的安装,下列哪项是错误的?[2006-115]
在建设项目财务评价中,当财务净现值为( )时,项目方案可行。
下列关于收益计量的说法,正确的是()。
阅读下面材料,回答问题。李华是一个十分聪明的学生,他的最大特点就是贪玩,学习不用功。每次考试他都有侥幸心理,希望能够靠运气过关。这次期末考试他考得不理想,他认为这次是自己的运气太差了。请运用维纳的归因理论来分析:如不正确,正确的归因应是怎样
标志着十年内战的局面由此结束,国内和平基本实现,成为时局转换的枢纽的是()
有如下定义:classInner{public:voidf1(){cout
对要求输入相对固定格式的数据,例如电话号码010-83950001,应定义字段的( )。
Terrywasimpressedwith______.
A、Hemovedthethreadawayfromtheneedle.B、Heusedspearsinsteadofneedle.C、Hetriedtogetthethreadtorunaroundthen
最新回复
(
0
)