首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-1,1)内二阶连续可导,且f”(x)≠0.证明: 对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
设f(x)在(-1,1)内二阶连续可导,且f”(x)≠0.证明: 对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
admin
2019-11-25
41
问题
设f(x)在(-1,1)内二阶连续可导,且f”(x)≠0.证明:
对(-1,1)内任一点x≠0,存在唯一的θ(x)∈(0,1),使得f(x)=f(0)+xf’[θ(x)x];
选项
答案
对任意x∈(-1,1),根据微分中值定理,得 f(x)=f(0)+xf’[Θ(x)x],其中0<Θ(x)<1. 因为f”(x)∈C(-1,1)且f”(x)≠0,所以f”(x)在(-1,1)内保号,不妨设f”(x)>0, 则f’(x)在(-1,1)内单调增加,又由于x≠0,所以Θ(x)是唯一的.
解析
转载请注明原文地址:https://kaotiyun.com/show/PBD4777K
0
考研数学三
相关试题推荐
设f(x)在区间[0,1]上连续,在区间(0,1)内存在二阶导数,且f(0)=f(1).证明:存在ξ∈(0,1)使2f’(ξ)+ξf"(ξ)=0.
设fn(x)=x3+anx—1,其中n是正整数,a>1.(1)证明方程fn(x)=0有唯一正根rn;(2)若Sn=r1+r2+…+rn,证明
设f(x)在[a,b]上连续,a<x1<x2<…<xn<b.试证:在(a,b)内存在ξ,使得
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f”[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设A是m阶矩阵,B是n阶矩阵,且|A|=a,|B|=b,C=,则|C|=_______.
某彩票每周开奖一次,每次提供十万分之一的中奖机会,且各周开奖是相互独立的.某彩民每周买一次彩票,坚持十年(每年52周),求他从未中奖的概率.
已知B=,矩阵A相似于B,A*为A的伴随矩阵,则︱A*+3E︱=_________________________。
设f(x)=,(Ⅰ)求证:f(x)在[0,+∞)上连续;(Ⅱ)求f(x)在[0,+∞)的单调性区间;(Ⅲ)求f(x)在[0,+∞)的最大值与最小值。
将三封信随机地投入编号为1,2,3,4的四个邮筒.记X为1号邮筒内信的数目,Y为有信的邮筒数目.求:(I)(X,Y)的联合概率分布;(Ⅱ)Y的边缘分布;(Ⅲ)在X=0条件下,关于Y的条件分布.
设3阶矩阵A的各行元素之和都为3,向量α1=(一1,2,一1)T,α2=(0,一1,1)T都是齐次线性方程组AX=0的解.求A.
随机试题
1945年,党的七大确立为必须长期坚持的指导思想是()
亚里士多德认为悲剧韵作用在于【】
李斯《谏逐客书》一文列举秦历史上四位明君任用客卿使秦富强的事例,然后得出结论:客卿对秦贡献巨大,逐客是错误的。其中的论证方法是()论证法。()
血液中CO2的含量主要取决于
A、绞股蓝B、刺五加C、白扁豆D、红景天E、西洋参某男,65岁,患热病气阴两伤,烦倦,治当补气养阴、清火生津。宜选用的药是
下列关于商业银行金融创新客户利益保护的表述,正确的有()。
采用“脱钩”方式转贷的,每次展期最长不超过()。
根据基期的不同,增长量可分为()。
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则fx’(0,1,一1)=______
Americanswithsmallfamiliesownasmallcaroralargeone.Ifbothparentsareworking,theyusuallyhavetwocars.Whenthe
最新回复
(
0
)