首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。 (Ⅰ)若α1,α2,α3线性相关,求a; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)设a=3,α4是与α1,α2,α3都正交的非零向量,
设α1=(1,3,5,-1)T,α2=(2,7,a,4)T,α3=(5,17,-1,7)T。 (Ⅰ)若α1,α2,α3线性相关,求a; (Ⅱ)当a=3时,求与α1,α2,α3都正交的非零向量α4; (Ⅲ)设a=3,α4是与α1,α2,α3都正交的非零向量,
admin
2018-11-16
60
问题
设α
1
=(1,3,5,-1)
T
,α
2
=(2,7,a,4)
T
,α
3
=(5,17,-1,7)
T
。
(Ⅰ)若α
1
,α
2
,α
3
线性相关,求a;
(Ⅱ)当a=3时,求与α
1
,α
2
,α
3
都正交的非零向量α
4
;
(Ⅲ)设a=3,α
4
是与α
1
,α
2
,α
3
都正交的非零向量,证明α
1
,α
2
,α
3
,α
4
可表示任何一个4维向量。
选项
答案
(Ⅰ)α
1
,α
2
,α
3
线性相关,则r(α
1
,α
2
,α
3
)<3 [*] 得a=-3。 (Ⅱ)与α
1
,α
2
,α
3
都正交的非零项向量即齐次方程组[*]的非零解,解此方程组: [*] 解得α
4
=c(19,-6,0,1)
T
,c≠0。 (Ⅲ)只用证明α
1
,α
2
,α
3
,α
4
线性相关,此时对任何4维向量α,有α
1
,α
2
,α
3
,α
4
,α线性相关,从而α可以用α
1
,α
2
,α
3
,α
4
线性表示。 方法一:由①知,a=3时,α
1
,α
2
,α
3
线性无关,只用证明α
4
不能用α
1
,α
2
,α
3
线性表示,用反证法,如果α
4
能用α
1
,α
2
,α
3
线性表示,设α
4
=c
1
α
1
+c
2
α
2
+c
3
α
3
,则(α
4
,α
4
)=(α
4
,c
1
α
1
+c
2
α
2
+c
3
α
3
)=c
1
(α
4
,α
1
)+c
2
(α
4
,α
2
)+c
3
(α
4
,α
3
)=0,得α
4
=0,与α
4
是非零向量矛盾。 方法二:计算行列式 [*] 于是α
1
,α
2
,α
3
,α
4
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/w8W4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:存在c∈(0,1),使得f(c)=1一2c;
∫max{x+2x2}dx=________.
设λ0为A的特征值.证明:求A2,A2+2A+3E的特征值;
设X在区间[一2,2]上服从均匀分布,令Y=求:D(Y+Z).
设随机变量X的密度函数为f(x)=求X在内的概率;
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
讨论函数的渐近线、升降区间、极值、凹凸性,并画出它的大致图形.
确定正数a,b的值,使得.
(96年)设某种商品的单价为p时,售出的商品数量Q可以表示成Q=-c.其中a、b、c均为正数,且a>bc.(1)求P在何范围变化时,使相应销售额增加或减少;(2)要使销售额最大,商品单价P应取何值?最大销售额是多少?
随机试题
毛泽东第一次明确提出社会主义社会存在敌我矛盾和人民内部矛盾的观点是()
维生素D3与β—CD形成包合物后,维生素D3的()
FIDIC施工合同条件中,业主支付预付款是为了帮助承包商解决( )时的资金短缺,从未来的工程款中提前支付的一笔款项。
监理单位对总监理工程师和专业监理工程师的工作进行考核的主要依据就是经监理单位主管负责人审批的( )。
校准的主要目的是()。
黎族有儿女成年后住在屋外的寮房里的民俗,俗称放寮。()
周期性训练原则的理论依据是()。
政府发放养老券,出现了很多问题,有的老人不会使用,有的老人不知道到哪里取,还有的发放错误。如果你是政府的工作人员,你该怎么办?
企业管理分成高、中、低3个层次,不同的管理层次需要不同的信息,下列描述中正确的是
长度为n的顺序存储线性表中,当在任何位置上插入一个元素概率都相等时,插入一个元素所需移动元素的平均个数为【】。
最新回复
(
0
)