首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的特征向量,那么矩阵P不能是( )
已知P-1AP=,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的特征向量,那么矩阵P不能是( )
admin
2017-01-16
39
问题
已知P
-1
AP=
,α
1
是矩阵A属于特征值λ=2的特征向量,α
2
,α
3
是矩阵A属于特征值λ=6的特征向量,那么矩阵P不能是( )
选项
A、(α
1
,-α
2
,α
3
)。
B、(α
1
,α
2
+α
3
,α
2
-2α
3
)。
C、(α
1
,α
3
,α
2
)。
D、(α
1
+α
2
,α
1
-α
2
,α
3
)。
答案
D
解析
若P
-1
AP=
,P=(α
1
,α
2
,α
3
),则有AP=P
,即
A(α
1
,α
2
,α
3
)=(α
1
,α
2
,α
3
)
亦即(Aα
1
,Aα
2
,Aα
3
)=(a
1
α
1
,a
2
α
2
,a
3
α
3
)。
可见α
i
是矩阵A属于特征值a
i
的特征向量(i=1,2,3),又因矩阵P可逆,因此α
1
,α
2
,α
3
线性无关。
若α是属于特征值λ的特征向量,则-α仍是属于特征值λ的特征向量,故选项A正确。
若α,β是属于特征值λ的特征向量,则α,β的线性组合仍是属于特征值λ的特征向量。本题中,α
2
,α
3
是属于λ=6的线性无关的特征向量,故α
2
+α
3
,α
2
-2α
3
,仍是λ=6的特征向量,并且α
2
+α
3
,α
2
-2α
3
线性无关,故选项B正确。
对于选项C,因为α
2
,α
3
均是λ=6的特征向量,所以α
2
与α
3
谁在前谁在后均正确。
即选项C正确。
由于α
1
,α
2
是不同特征值的特征向量,因此α
1
+α
2
,α
1
-α
2
不再是矩阵A的特征向量,故选D。
转载请注明原文地址:https://kaotiyun.com/show/PCu4777K
0
考研数学一
相关试题推荐
自动生产线在调整后出现废品的概率为P,当在生产过程中出现废品时,立即重新进行调整,求在两次调整之间生产的合格品数X的分布列及其数学期望.
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b)使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
设有两个数列{an}{bn}若
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.证明B可逆;
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
设函数Fn(x)=其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:收敛:
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则Fy’(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的____________条件.
已知曲线在直角坐标系中由参数方程给出:x=t+e-1,y=2t+e-2t(t≥0).证明该参数方程确定连续函数Y=y(戈),z∈[1,+∞).
随机试题
大型企业的核心能力目标主要是企业创新能力目标,包括()
计划工作应当是()
骨关节炎的发病基础是
患者,男,54岁,腰部、双膝关节疼痛重着,遇寒则加剧,伴夜尿频数,畏寒肢冷,肢体麻木,舌质淡,脉迟弱无力。用药宜首选
巴拿马籍货轮“特丽”承运一批运往中国的货物,中途停靠韩国。“特丽”轮在韩国停靠卸载同船装运的其他货物时与利比里亚籍“比亚”轮相碰。“特丽”受损但能继续航行并继续航行至中国港口卸货,“比亚”轮的目的港也是中国港口,因此。“特丽”轮船东向中国某海事法院申请扣押
在世界银行规定的工程造价构成中,有一项可能发生,可能不发生,在正常建设条件下只是一种储备的费用是()。
北京时间2011年6月15日19:30点,小强在广州给在南非(与北京时差为一6小时)看世界杯的父亲打电话,语言表达准确的一项是()。
我们党建军治军的基本方略是()
设四阶方阵A﹦(α,γ2,γ3,γ4),JB﹦(β,γ2,γ3,γ4),其中α,β,γ2,γ3,γ4均为四维列向量,且|A|﹦2,|B|﹦1,则|A-4B|﹦______。
Americansbelievethatindividualsmustlearnto【B1】_______themselvesorrisklosingfreedom.Thismeansachievingbothfinanci
最新回复
(
0
)