首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若 Aα1=α2,Aα2=α3,…,Aαn—1=αn,Aαn=0. (1)证明:α1,α2,…,αn线性无关; (2)求A的特征值与特征向量.
admin
2016-10-13
37
问题
设A是n阶矩阵,α
1
,α
2
,…,α
n
是n维列向量,且α
n
≠0,若
Aα
1
=α
2
,Aα
2
=α
3
,…,Aα
n—1
=α
n
,Aα
n
=0.
(1)证明:α
1
,α
2
,…,α
n
线性无关;
(2)求A的特征值与特征向量.
选项
答案
(1)令x
1
α
1
+x
2
α
2
+…+x
n
α
n
=0,则 x
1
Aα
1
+x
2
Aα
2
+…+x
n
Aα
n
=0→x
1
α
2
+x
2
α
3
+…+x
n—1
α
n
=0 x
1
Aα
2
+x
2
Aα
3
+…+x
n—1
Aα
n
=0→x
1
α
3
+x
2
α
4
+…+x
n—2
α
n
=0 x
1
α
n
=0 因为a
n
≠0,所以x
1
=0,反推可得x
2
=…=x
n
=0,所以α
1
,α
2
,…,α
n
线性无关. (2)A(α
1
,α
2
,…,α
n
)=(α
1
,α
2
,…,α
n
)[*]=B,则A与B相似,由|λE一B|=0→λ
1
=…=λ
n
=0,即A的特征值全为零,又r(A)=n一1,所以AX=0的基础解系只含有一个线性无关的解向量,而Aα
n
=0α
n
(α
n
≠0),所以A的全部特征向量为kα
n
(k≠0).
解析
转载请注明原文地址:https://kaotiyun.com/show/PEu4777K
0
考研数学一
相关试题推荐
设f(x)在(a,b)内是严格下凸函数,证明对任何x1,x2∈(a,b),x1<x<x2,有不等式成立.
设S:x2+y2+z2=a2(z≥0),S1是S在第一卦限中的部分,则有
设矩阵A满足A2+A-4E=0,其中E为单位矩阵,则(A-E)-1=__________.
设y=y(x)是由函数方程㏑(x+2y)=x2-y2所确定的隐函数.(1)求曲线y=y(x)与直线y=-x的交点坐标(x0,yo);(2)求曲线y=y(x)在(1)中交点处的切线方程.
确定下列函数定义域:
设xOy平面第一象限中有曲线F:y=),(x),过点A(0,),y’(x)>0.又M(x,y)为F上任意一点,满足:弧段的长度与点M处F的切线在x轴上的截距之差为.导出y=y(x)满足的积分、微分方程和初始条件;
设曲线(正整数n≥1)在第一象限与坐标轴围成图形的面积为I(n),证明:
计算,其中L为x2+y2=1从点A(1,0)经过B(0,1)到C(一1,0)的曲线段.
若视∑为曲面x2+y2+z2=a2(y≥0,z≥0)的上侧,则当f(x,y,z)为下述选项中的函数(),曲线积分。
随机试题
给定资料: 1.2014年6月6日下午两点多,驻马店文化路的一家按摩店门前,敲锣打鼓,秧歌红绸,鞭炮轰鸣……这是十几位盲友为河南盲人高考第一人——李金生参加高考而助威。随后,李金生和盲友们到汽车站坐班车前往考点。 到达考点附近已是下午5点多,确山县招生
血证预后与哪些因素有关
正常人皮质醇分泌节律,哪项描述正确
某商业银行上年度期末可供分配的资本为5000亿元,计划本年度注入1000亿元新资本,若本年度电子行业在资本分配中的权重为5%,则本年度电子行业资本分配的限度为()亿元。
实现物流标准化的意义在于有利于各环节各部门的衔接,可以极大地加快物流的速度,减少物资在物流过程中的损失。目前集装箱是标准化程度最高的物流工具,其物流基础模数尺寸为()。
企业的信用标准严格,给予客户的信用期很短,使得应收账款周转率很高,将有利于增加企业的利润。()
与其他课程相比,综合实践活动课程的目标()。
现代计算机普遍采用总线结构,按照信号的性质划分,总线一般分为()。
Accordingtothepassage,somepeople’simpressionofsealsisthat______.Thesealhunterbegsforgivenessoftheoldsealbe
A、Herphonenumber.B、Thelocationoftheapartment.C、Thebesttimetocallher.D、Herfirstname.AWhichofthefollowingdoes
最新回复
(
0
)