首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
[2015年] 设向量组α1,α2,α3是三维向量空间R3的一个基,β1=2α1+2kα3,β2=2α2,β3=α1+(k+1)α3. 当k为何值时,存在非零向量ξ在基α1,α2,α3与基β1,β2,β3下的坐标相同,并求所有的ξ.
admin
2019-04-08
61
问题
[2015年] 设向量组α
1
,α
2
,α
3
是三维向量空间R
3
的一个基,β
1
=2α
1
+2kα
3
,β
2
=2α
2
,β
3
=α
1
+(k+1)α
3
.
当k为何值时,存在非零向量ξ在基α
1
,α
2
,α
3
与基β
1
,β
2
,β
3
下的坐标相同,并求所有的ξ.
选项
答案
设[*],则P为从基α
1
,α
2
,α
3
到另一个基β
1
,β
2
,β
3
的过渡矩阵,即 [β
1
,β
2
,β
3
]=[α
1
,α
2
,α
3
]P. 设ξ在基α
1
,α
2
,α
3
下的坐标为(x
1
,x
2
,x
3
),在基β
1
,β
2
,β
3
下的坐标为(y
1
,y
2
,y
3
).由式得到 [y
1
,y
2
,y
3
]=[x
1
,x
2
,x
3
](P
-1
)
T
. ① 由题设[y
1
,y
2
,y
3
]=[x
1
,x
2
,x
3
],则由式①得到 [x
1
,x
2
,x
3
]=[x
1
,x
2
,x
3
](P
-1
)
T
, 两边取转量得到 [*],即[*] 令X=(x
1
,x
2
,x
3
)
T
,则PX=X,即(P—E)X=0. 下面解方程组②,为要其有非零解,必有 [*],即k=0. 这时方程组②化为[*].由基础解系的简便求法即得该方程组的一个基础解系为[一1,0,1]
T
.因而该方程组的通解为[x
1
,x
2
,x
3
]
T
=c[-1,0,1]
T
,其中c为任意常数. 即x
1
=一c,x
2
=0,x
3
=c,从而所求的所有向量为ξ=x
1
α
1
+x
2
α
2
+x
3
α
1
=一cα
1
+cα
3
,其中c为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/PJ04777K
0
考研数学一
相关试题推荐
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
(2003年)过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(I)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
(2008年)设f(x)是连续函数。(I)利用定义证明函数可导,且F′(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数。
二阶矩阵A有两个不同特征值,α1,α2是A的线性无关的特征向量,且A2(α1+α2)=α1+α2,则|A|=_______.
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
设A,B,C均为n阶矩阵,若AB=C,且B可逆,则()
设矩阵其行列式|A|=-1,又A的伴随矩阵A*有一个特征值λ0,属于λ0的一个特征向量为α=(-1,-1,1)T,求a,b,c和λ0的值。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
随机试题
试述低渗性缺水的主要病因和诊断要点。
诊断早期肾功能受损最灵敏的指标是()
下列不属于行牵引术患者病情监测内容的是
关于药品批发企业的管理,正确的是
下列关于投资基金的表述中,正确的有()。[2008年考试真题]
(2013年)2011年2月3日,A公司为向B公司支付货款,签发并承兑了一张以B公司为收款人的商业承兑汇票,到期日为2011年8月3日。B公司拟向C公司购买钢材,遂在该汇票背书栏中作为背书人签章,并记载C公司为被背书人,由本公司业务人员携至验货现场。由于发
依次与下列别号正确配对的一组作家是:六一居士北江先生白石道人四明狂客
药片:服用:治病
大城市的公共交通部门正在赤字中挣扎。乘客总抱怨汽车晚点、运输工具出毛病、服务种类减少以及票价高于他们过去习惯于支付的水平。由于上述所有原因以及汽油的价格并未高至令人不敢问津的水平,所以公共交通的乘客有所减少,更进一步增加了赤字。下面哪一项关于公交乘客数量与
Bobwascompletely______bytherobber’sdisguise.
最新回复
(
0
)