首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
admin
2017-12-29
58
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
和ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关。
选项
答案
(Ⅰ)对增广矩阵(A|ξ
1
)作初等行变换,则 [*] 得Ax=0的基础解系(1,一1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
。故 ξ
2
=(0,0,1)
T
+k(1,一1,2)
T
其中k为任意常数。 [*] 对增广矩阵(A
2
|ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(一1,1,0)
T
,(0,0,1)
T
和A
2
x=ξ
1
的特解([*],0,0)
T
故 ξ
3
=([*],0,0)
T
+t
1
(一1,1,0)
T
+t
2
(0,0,1)
T
,其中t
1
,t
2
为任意常数。 (Ⅱ)因为 |ξ
1
,ξ
2
,ξ
3
|=[*] 所以ξ
1
,ξ
2
,ξ
3
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/PQX4777K
0
考研数学三
相关试题推荐
设f(x)在[0,+∞)上连续,0<a<b,且收敛,其中常数A>0.证明:
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,an=一1nf(x)dx(n=1,2,…).证明:证存在;
若f’(x2)=(x>0),则f(x)=________.
已知一2是的特征值,其中b≠0是任意常数,则x=________.
求微分方程(4一x+y)dx一(2一x—y)dy=0的通解.
设,B是3阶非零矩阵,且AB=0,则Ax=0的通解是________.
设a为常数,f(x)=aex一1一x一,则f(x)在区间(一∞,+∞)内()
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式:f(1+sinx)一3f(1一sinx)=8x+α(x),其中α(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程.
设f(x)在(-∞,+∞)上具有连续导数,且f’(0)≠0.令F(x)=求证:(Ⅰ)若f(x)为奇函数,则F(x)也是奇函数.(Ⅱ)(0,0)是曲线y=F(x)的拐点.
随机试题
甲企业拥有三幢房产,分别为厂房A、厂房B和一幢办公楼,其中厂房A为与乙企业和丙企业共同共有,2014年有关甲企业房产的事项如下。(1)乙企业准备将厂房A进行内部装修,添置新的附属设施,经查,甲、乙、丙三个企业事先均没有约定处理方式,乙企业与甲企业
可摘局部义齿解剖式人工牙的牙尖斜度是可摘局部义齿人工牙种类中,稳定作用好,对牙槽嵴损害小的人工牙牙尖斜度是
塔式起重机应按要求做()。
热处理有很多种方法,但所有的热处理都是由三个阶段组成的,其中包括()。
如下图所示消防车登高操作场地与消防车通道连通,且场地靠建筑外墙一侧的边缘距离建筑外墙为()m。
()是指家长通过不同的形式,参与幼儿园的一些教育教学活动,协助教师的工作,以丰富幼儿的学习经验。达到家庭与幼儿园的相互配合与协调一致。
(甲)若夫霪雨霏霏,连月不开,阴风怒号,浊浪排空;日星隐曜,山岳潜形;商旅不行,樯倾楫摧;薄暮冥冥,虎啸猿啼。登斯楼也,则有去国怀乡,忧谗畏讥,满目萧然,感极而悲者矣。至若春和景明,波澜不惊,上下天光,一碧万顷;沙鸥翔集,锦鳞游泳;岸芷
在窗体上画一个命令按钮,名称为Command1。然后编写如下程序:PnvateSubCommand1_Click()DimxAsInteger,yAsInteger,tAsIntegerx=10:y=2
设有关系R及关系S,它们分别有p、q个元组,则关系R与S经笛卡儿积后所得新关系的元组个数是()。
Thepooroldconsumer!We’dhavetopayagreatdealmoreifadvertisingdidn’tcreatemassmarketsforproducts.Itisprecisel
最新回复
(
0
)