首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
设 (Ⅰ)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3; (Ⅱ)对(Ⅰ)中任意向量ξ2和ξ3,证明ξ1,ξ2,ξ3线性无关。
admin
2017-12-29
65
问题
设
(Ⅰ)求满足Aξ
2
=ξ
1
,A
2
ξ
3
=ξ
1
的所有向量ξ
2
,ξ
3
;
(Ⅱ)对(Ⅰ)中任意向量ξ
2
和ξ
3
,证明ξ
1
,ξ
2
,ξ
3
线性无关。
选项
答案
(Ⅰ)对增广矩阵(A|ξ
1
)作初等行变换,则 [*] 得Ax=0的基础解系(1,一1,2)
T
和Ax=ξ
1
的特解(0,0,1)
T
。故 ξ
2
=(0,0,1)
T
+k(1,一1,2)
T
其中k为任意常数。 [*] 对增广矩阵(A
2
|ξ
1
)作初等行变换,有 [*] 得A
2
x=0的基础解系(一1,1,0)
T
,(0,0,1)
T
和A
2
x=ξ
1
的特解([*],0,0)
T
故 ξ
3
=([*],0,0)
T
+t
1
(一1,1,0)
T
+t
2
(0,0,1)
T
,其中t
1
,t
2
为任意常数。 (Ⅱ)因为 |ξ
1
,ξ
2
,ξ
3
|=[*] 所以ξ
1
,ξ
2
,ξ
3
线性无关。
解析
转载请注明原文地址:https://kaotiyun.com/show/PQX4777K
0
考研数学三
相关试题推荐
设f(x)是在区间[1,+∞)上单调减少且非负的连续函数,an=一1nf(x)dx(n=1,2,…).证明:证存在;
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
幂级数的收敛域为________.
设Yt,Ct,It分别是t期的国民收入、消费和投资,三者之间有如下关系求Yt.
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α1,α1
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
求下列函数的导数:
设二维随机变量(X,Y)在区域上服从均匀分布,则(X,Y)的关于X的边缘概率密度fx(x)在点x=e处的值为________.
假设某季节性商品,适时地售出1千克可以获利s元,季后销售每千克净亏损t元。假设一家商店在季节内该商品的销售量X(千克)是一随机变量,并且在区间(a,b)内均匀分布。问季初应安排多少这种商品,可以使期望销售利润最大?
设试问当α取何值时,f(x)在点x=0处,①连续,②可导,③一阶导数连续,④二阶导数存在.
随机试题
Word将页面正文的顶部空白部分称为______。
主诉的含义下列哪项正确
PFM修复体是由下列哪一项在真空炉内烧结而成的修复体
当神经冲动到达运动神经末梢时,可引起接头前膜
患者,女性,60岁。诊断为急性胆囊炎,经非手术治疗已5天,目前仍疼痛加剧,伴高热,右上腹广泛压痛,反跳痛,腹肌紧张,肠音减弱,体温39℃,白细胞计数18×109/L。应选择
水泥稳定粒料基层的纵断高程应采用()进行检查,每200m测4个断面。
根据技术指标理论,( )。
产品从流通据点到用户之间的运输称为()。
有“美国公立学校之父”之称的是()。
A、Toliveamorecomfortablelife.B、Togiveperformances.C、Tobeapupilofafamousviolinist.D、Toenterafamousuniversity
最新回复
(
0
)