首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(α1,α2,α3,α4)经行初等变换化为矩阵.B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
设矩阵A=(α1,α2,α3,α4)经行初等变换化为矩阵.B=(β1,β2,β3,β4),且α1,α2,α3线性无关,α1,α2,α3,α4线性相关,则( ).
admin
2022-11-04
70
问题
设矩阵A=(α
1
,α
2
,α
3
,α
4
)经行初等变换化为矩阵.B=(β
1
,β
2
,β
3
,β
4
),且α
1
,α
2
,α
3
线性无关,α
1
,α
2
,α
3
,α
4
线性相关,则( ).
选项
A、β
4
不能由β
1
,β
2
,β
3
线性表示
B、β
4
能由β
1
,β
2
,β
3
线性表示,但表示法不唯一
C、β
4
能由β
1
,β
2
,β
3
线性表示,且表示法唯一
D、β
4
能否由β
1
,β
2
,β
3
线性表示不能确定
答案
C
解析
因为α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
唯一线性表示,又A=(α
1
,α
2
,α
3
,α
4
)经过有限次初等行变换化为B=(β
1
,β
2
,β
3
,β
4
),所以方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
与x
1
β
1
+x
2
β
2
+x
3
β
3
=β
4
是同解方程组,因为方程组x
1
α
1
+x
2
α
2
+x
3
α
3
=α
4
有唯一解,所以方程组x
1
β
1
+x
2
β
2
+x
3
+β
3
=β
4
有唯一解,即β
4
可由β
1
,β
2
,β
3
唯一线性表示,选(C).
转载请注明原文地址:https://kaotiyun.com/show/PTgD777K
0
考研数学三
相关试题推荐
下列各项属于紧缩句的是()。
据清代全唐诗及相关资料统计,唐代诗人大约有3700名,他们所创的诗歌有()。
词汇中最主要的部分是基础词汇。基础词汇具有_____、_____和等特点。
动词的前面能够加副词“不”,多数不能加_____。
某县扶贫办副主任甲,利用职务将一项造价20万的扶贫工程定价40万,对外招标。甲冒用A公司的营业执照、安全许可证等证明材料,参与该项目招标,又通过职权运作使“A公司”中标。之后,甲以“A公司”的名义将工程交给村民乙承建,并在工程完工验收后,利用职权将40万元
2014年9月,甲公司与乙公司签订《国内保理融资服务协议》等合同,约定:乙公司将其应收账款及相关权利转让给甲公司,甲公司为其提供额度为2000万元、附期限的公开型有追索权保理融资服务;若应收账款对应的买方未按时足额向甲公司还款,则乙公司须在回购期内回购仍未
arcsiny/x=ln|x|+C(C为任意常数)
设n维列向量α=(a,0,…,0,a)T,其中a<0,又A=E-ααT,B=E+1/aααT,且B为A的逆矩阵,则a=________.
设A为n阶矩阵,A的各行元素之和为0且,r(A)=n-1,则方程组AX=0的通解为________.
随机试题
简述现代护理赋予外科工作者的责任。
旅游企业以不付费的方式开展的公共宣传活动,通常是指企业的()活动。
A.不可逆性抑制B.竞争性抑制C.非竞争性抑制D.反竞争性抑制磺胺类药物的抑菌机制是
我国规定的食品中镉含量不得超过0.2mg/kg的包括
下列税法要素中,能够区别一种税与另一种税的重要标志是()。
社会主义民主和资本主义民主的根本区别在于是否实现人民当家作主。()
一、注意事项 1.申论考试,与传统作文考试不同,是对分析驾驭材料的能力与对表达能力并重的考试。 2.作答参考时限:阅读材料40分钟,作答110分钟。 3.仔细阅读给定的资料,按照后面提出的“申论要求”依次作答。二、给定材料
网络欺凌,是一种在网上生活中发生的欺凌事件,指人们利用互联网做出针对个人或群体的恶意、重复、敌意的伤害行为,使他人受到伤害。下列属于网络欺凌现象的有()。
A、 B、 C、 D、 D
A、Quietplants.B、Well-wateredplants.C、Healthyplants.D、Thirstyplants.D信息明示题。短文第二段指出Healsoknowsthatmanyinsectsprefer
最新回复
(
0
)