首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x-1)y"-(2x+1)y’+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x-1)y"-(2x+1)y’+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
admin
2021-01-19
51
问题
已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x-1)y"-(2x+1)y’+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
选项
答案
由已知得 y’
2
=u’(x)e
x
+u(x)e
x
=[u’(x)+u(x)]e
x
, y"
2
=e
x
[u"(x)+2u’(x)+u(x)], 所以 (2x-1)e
x
[u"(x)+2u’(x)+u(x)]-(2x+1)[u’(x)+u(x)]e
x
+2u(x)e
x
=0, 化简可得u"/u’=[*],即(lnu’)’=[*],两边对x求积分得 lnu’(x)=-∫[*]dx=ln|2x-1|+lne
-x
+lnC
1
, 即u’=C
1
(2x-1)e
-x
。 上式两端再次积分得 u(x)=C
1
∫(2x-1)e
-x
dx=C
1
(-2x-1)e
-x
+C
2
, 将u(-1)=e,u(0)=-1代入上式得C
1
=1,C
2
=0,故u(x)=-(2x+1)e
-x
。 因此,原方程的通解为 y(x)=D
1
y
1
(x)+D
2
y
2
(x)=D
1
e
x
-D
2
(2x+1), 其中D
1
,D
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/PV84777K
0
考研数学二
相关试题推荐
设函数f(x)连续,且∫0xf(t)dt=sin2x+∫0xtf(x-t)dt.求f(x).
设函数f(u)具有连续导数,且方程x一z=yf(z2一x2)确定隐函数z=z(x,y),则
函数y=的麦克劳林公式中x4项的系数是__________.
设y(x)是初值问题的解,则∫0+∞xy’(x)dx﹦()
已知A是3阶矩阵,A的特征值为1,—2,3.则(A*)*的特征值为_________.
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T求方程组的通解。
数列极限I=n2[arctan(n+1)—arctann]=___________.
已知极坐标系下的累次积分其中a>0为常数,则,在直角坐标系下可表示为_________。
(1997年试题,二)如图1—3—1所示,设在闭区间[a,b]上f(x)>0,f’(x)0记则().
随机试题
下述各类药物属于佐药范畴的是()(1995年第147题)
束臂加压试验(Trousseau征)及面神经叩击征(Chvostek征)阳性及腱反射亢进是以下哪项电解质异常的特征性表现()
甲亢危象治疗过程中禁用的药物是
死亡人数在2人以下,重伤3人以上,19人以下,直接经济损失在10万元以上,不满30万元的事故属于( )。
预应力张拉是桥梁施工中的关键工序,下列说法正确的是()。
根据行政复议法律制度的规定,具体行政行为有下列()情形之一的,行政复议机关应当予以撤销、变更或者确认违法。
我国《证券法》规定,公开发行公司债券,累计债券余额不超过公司净资产的()。
为考察词的类型(靶子词、非靶子词)以及辨别条件(高辨别、低辨别)对双耳追随效果的影响。研究者将60名被试随机分成两组,每组30名,一组即接受靶子词——高辨别条件的处理,也接受靶子词——低辨别条件的处理;另一组则接受非靶子词——高辨别条件处理,也接受非靶子词
迄今为止,年代最久远的智人遗骸在非洲出现,距今大约20万年。据此,很多科学家认为,人类起源于非洲,现代人的直系祖先_一一智人在约20万年前于非洲完成进化后,在约15万年到20万年前,慢慢向北迁徙,穿越中东到达欧洲和亚洲,逐步迁徙至世界其他地方。以下哪项如果
关于甲班体育达标测试,三位老师有如下预测:张老师说:“不会所有人都不及格。”李老师说:“有人会不及格。”王老师说:“班长和学习委员都能及格。”如果三位老师中只有一人的预测正确,则以下哪项一定为真?
最新回复
(
0
)