首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x-1)y"-(2x+1)y’+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
已知y1(x)=ex,y2(x)=u(x)ex是二阶微分方程(2x-1)y"-(2x+1)y’+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
admin
2021-01-19
53
问题
已知y
1
(x)=e
x
,y
2
(x)=u(x)e
x
是二阶微分方程(2x-1)y"-(2x+1)y’+2y=0的解,若u(-1)=e,u(0)=-1,求u(x),并写出该微分方程的通解。
选项
答案
由已知得 y’
2
=u’(x)e
x
+u(x)e
x
=[u’(x)+u(x)]e
x
, y"
2
=e
x
[u"(x)+2u’(x)+u(x)], 所以 (2x-1)e
x
[u"(x)+2u’(x)+u(x)]-(2x+1)[u’(x)+u(x)]e
x
+2u(x)e
x
=0, 化简可得u"/u’=[*],即(lnu’)’=[*],两边对x求积分得 lnu’(x)=-∫[*]dx=ln|2x-1|+lne
-x
+lnC
1
, 即u’=C
1
(2x-1)e
-x
。 上式两端再次积分得 u(x)=C
1
∫(2x-1)e
-x
dx=C
1
(-2x-1)e
-x
+C
2
, 将u(-1)=e,u(0)=-1代入上式得C
1
=1,C
2
=0,故u(x)=-(2x+1)e
-x
。 因此,原方程的通解为 y(x)=D
1
y
1
(x)+D
2
y
2
(x)=D
1
e
x
-D
2
(2x+1), 其中D
1
,D
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/PV84777K
0
考研数学二
相关试题推荐
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
已知累次积分,I=f(rcosθ,rsinθ)rdr,其中a>0为常数,则I可写成
设F(u,v)具有连续的一阶偏导数,z=z(x,y)由方程所确定,并设(x-a)Fu’﹢(y-b)Fv’≠0.当(x,y,z)≠(a,b,c)时,求
过坐标原点作曲线y=ex的切线,该切线与曲线y=ex以及x轴围成的向x轴负向无限伸展的平面图形记为D.求(Ⅰ)D的面积A;(Ⅱ)D绕直线x=1旋转一周所成的旋转体的体积V.
设函数f(x)(x≥0)连续可微,f(0)=1,已知曲线y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线所围成的图形的面积与曲线y=f(x)在[0,x]上的弧长值相等,求f(x).
设函数f(x)处处可导,且0≤f’(x)≤(k>0为常数),又设x0为任意一点,数列{x0}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
设,证明数列{xn}的极限存在,并求此极值。
(02年)设0<x1<3,(n=1,2…),证明数列{xn}的极限存在,并求此极限.
(1992年)由曲线y=χeχ与直线y=eχ所围成图形的面积S=______.
随机试题
眩晕的特点是
简述技术贸易的内容。
若要评估一个公司的财务健康状况,最重要的信息来源是()
患者女性30岁,右腮腺区反复肿胀两周,与进食有关,可自行消退。此病例最可能的诊断是
某男性患者,25岁。上右1牙冠切1/3横断,近中髓角暴露24小时,无松动,口内余牙无异常,咬合关系正常。未检查出骨折,口内黏膜无创口。最合适的修复方法是()
用复制具有相似环境功能的工程的费用来表示该环境的价值,此法在环境影响经济评价中称为()。
对于物流系统的含义,下列()是不正确的。
对韦氏成人智力量表(WAIS-RC)分量表的平衡性分析,正确的说法包括()。
HypertensionDrugsFoundtoCutRiskofStrokeAustraliandoctorsdeclaredMondaythatacocktailofsimpleantihypertensive
Inhisinauguralspeech,______saidthat"theonlythingwehavetofearisfearitself".
最新回复
(
0
)