首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
设齐次线性方程组,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
admin
2019-06-28
48
问题
设齐次线性方程组
,其中ab≠0,n≥2.讨论a,b取何值时,方程组只有零解、有无穷多个解?在有无穷多个解时求出其通解.
选项
答案
D=[*]=[a+(n-1)b](a-b)
n-1
. (1)当a≠b,a≠(1-n)b时,方程组只有零解; (2)当a=b时,方程组的同解方程组为χ
1
+χ
2
+…+χ
n
=0,其通解为X=k
1
(-1,1,0,…,0)
T
+k
2
(-1,0,1,…,0)
T
+…+k
n-1
(-1,0,…,0,1)
T
(k
1
,k
2
,…,k
n-1
为任意常数); (3)令A=[*], 当a=(1-n)b时,r(A)=n-1,显然(1,1,…,1)
T
为方程组的一个解,故方程组的通解为k(1,1,…,1)
T
(k为任意常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/UdV4777K
0
考研数学二
相关试题推荐
设二次型f(x1,x2,x3)=3x12+3x22+5x32+4x1x3—4x2x3。写出二次型的矩阵表达式;
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2—2x1x3+2ax2x3通过正交变换化为标准形2y12+2y22+by32。求f在xTx=3下的最大值。
二次型f(x1,x2,x3)=x12+4x22+4x32一4x1x2+4x1x3—8x2x3的规范形为()
设f(x)=,则f(x)的间断点为x=_________。
设星形线方程为(a>0).试求:1)它所围的面积_______;2)它的周长=_______;3)它围成的区域绕χ轴旋转而成的旋转体的体积=________和表面积=______.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
已知A,B为三阶方阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵。证明:矩阵A一2E可逆;
设an=3/2∫0n/(n+1)xn-1dx,则极限nan等于()
求极限(sint/sinx)x/(sint-sinx),记此极限为f(x),求函数f(x)的间断点并指出其类型。
随机试题
类风湿关节炎对症治疗的常用药物是
与去甲肾上腺素比较,多巴胺的不同点是
患者男,38岁。左前胸第四肋间被刺伤后紧急送到急诊室。查体:面色苍白,呼吸浅弱,血压60/45mmHg,颈静脉怒张;胸穿未抽出血和气。最可能诊断是
合同转让
下列关于金融风险造成的损失的说法,不正确的是()。
作家方方笔下的七哥(出自《风景》)有下列哪一个人物的影子?()
在教学工作的基本程序中,()是上好课的重要保证。
古人有立德、立功、立言之说。可是立德需要一世的修为,立功太过危险,立言则要皓首穷经,这都是太难的事,比不上立名来得容易。在这个市场的时代,成名可以很快,只要成了名人,没学问也可以成为大师,自有一帮徒众会去吹捧。市场时代会形成一种轻薄速食的文化,透过媒体来表
(2006年法条分析29)刑法第239条规定:“以勒索财物为目的绑架他人的,或者绑架他人作为人质的,处十年以上有期徒刑或者无期徒刑,并处罚金或者没收财产;致使被绑架人死亡或者杀害被绑架人的,处死刑,并处没收财产。以勒索财物为目的偷盗婴幼儿的,依照前款的规定
A、Anadvertisementinthepaper.B、Thedetailsofapossiblejob.C、Asmallfirmofconsultantengineers.D、Aninterviewforwai
最新回复
(
0
)