首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵. 证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
admin
2018-06-15
35
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=
其中A
*
是A的伴随矩阵,E为n阶单位矩阵.
证明矩阵Q可逆的充分必要条件是α
T
A
-1
α≠b.
选项
答案
用拉普拉斯展开式及行列式乘法公式,有 [*] =|A|
2
(b-α
T
A
-1
α). 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b-α
T
A
-1
α). 由此可知,Q可逆的充分必要条件是b-α
T
A
-1
α≠0,即α
T
A
-1
α≠b.
解析
转载请注明原文地址:https://kaotiyun.com/show/PXg4777K
0
考研数学一
相关试题推荐
设f(x)在闭区间[0,c]上连续,其导数f’(x)在开区间(0,c)内存在且单调减少,f(0)=0.试应用拉格朗日中值定理证明:f(a+b)≤f(a)+f(b),其中常数a,b满足条件0≤a≤b≤a+b≤c.
设10件产品中有4件不合格品,从中任取两件,已知所取两件中有一件是不合格品,求另一件也是不合格品的概率.
设R3中两个基α1=[1,1,0]=,α2=[0,1,1]T,α3=[1,0,1]T;β1=[-1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T求在上述两个基下有相同坐标的向量.
设X和Y相互独立都服从0-1分布:P{X=1}=P(Y=1}=0.6.试证明:U=X+Y,V=X-Y不相关,但是不独立.
设X1,X2,…Xn为一列独立同分布的随机变量,随机变量N只取正整数且N与{Xn}独立,求证:
设A=,B是3阶非零矩阵,且AB=O,则Ax=0的通解是_______
求不定积分
设f(x,y)为具有二阶连续偏导数的二次齐次函数,即对任何x,y,t下式成立f(tx,ty)=t2f(x,y).设D是由L:x2+y2=4正向一周所围成的闭区域,证明:∮Lf(x,y)dx=∫∫Ddiv[gradf(x,y)]dσ
用泰勒公式确定下列无穷小量当x→0时关于x的无穷小阶数:(Ⅰ)(Ⅱ)(et-1-t)2dt.
已知抛物线y=ax2+bx(其中a0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S,问当a,b为何值时,S最大?最大值是多少?
随机试题
Icanhardlyhearwhathe’ssaying,and______.
“大实有赢状”的病理基础
患者女性,下腹部坠胀疼痛,有时伴腰骶部疼痛,白带量多,被诊为慢性盆腔炎,可选择的外治法是
下列关于粉尘性质的叙述中,不正确的是()
根据育人为本的理念,教师的下列做法中不正确的是()。
全面发展教育的基本组成部分中,以传授知识、发展技能、培养自主性和创造性为主要内容和任务的是()。
评述法币政策。
Behaviorproblemsofdogsarebelievedto______.Whenadoghasreceivedeffectiveobediencetraining,itsowner______.
ThemilitaryaspectoftheUnitedStatesCivilWarhasalwaysattractedthemostattentionfromscholars.Theroarofgunfire,
Directions:Forthispart,youareallowed30minutestowriteashortessayentitledTheImportanceofChangebycommentingon
最新回复
(
0
)