首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明: ATAX=ATb一定有解.
设A是m×n阶实矩阵,证明: ATAX=ATb一定有解.
admin
2016-07-22
56
问题
设A是m×n阶实矩阵,证明:
A
T
AX=A
T
b一定有解.
选项
答案
A
T
AX=A
T
b有解[*]r(A
T
A)=r(A
T
A|A
T
b). 由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故 r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b), 故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/acw4777K
0
考研数学一
相关试题推荐
设函数y=y(x)满足x=dt,x≥0若y=y(x),y=0及x=1所围图形为D,求D绕Y轴旋转一周所得旋转体的体积V
设函数z=z(x,y)由方程exyz=∫-∞a/2f(xy+z-t)dt确定,其中f连续,则_________
设f(x)在[a,b]上连续可导,f(x)在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0,证明:(1)在(a,b)内至少存在一点ξ,使得f’(ξ)=f(ξ);(2)在(a,b)内至少存在一点η(η≠
设A为三阶实对称矩阵,且满足条件A2+2A=O.已知r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为三阶单位矩阵.
设四元齐次线性方程组(Ⅰ)为且已知另一个四元齐次线性方程组(Ⅱ)的一个基础解系为a1=(2,-1,a+2,1)π,a2=(-1,2,4,a+8)π.(1)求方程组(Ⅰ)的一个基础解系;(2)当a为何值时,方程组(Ⅰ)与方程组(Ⅱ)有非零
求函数y=(x-1)的单调区间与极值,并求该曲线的渐近线.
计算rotF·nds,其中F=(x-z)i+(x3+yz)j-3xy2k,∑是抛物面z=4-x2-y2在xOy平面上方的部分,n是∑的上侧的单位法向量.
甲、乙两人分别拥有赌本30元和20元,他们利用投掷一枚均匀硬币进行赌博,约定如果出现正面,甲赢10元、乙10元.如果出现反面,则甲输10元、乙赢10元,分别用随机变量表示投掷一次后甲、乙两人的赌本,并求其概率分布和分布函数,画出分布函数的图形.
设A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,(I)求相继两次故障之间时间间隔T的概率分布;(Ⅱ)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q.
随机试题
问卷资料整理通常包含的程序有()
戏剧作品:《茶馆》
辛味的药物能酸味的药物能
下列属于非系统风险造成证券价格变化的是()。
下列属于供应链管理系统软件的主要模块的有(),
[材料一]自古皆封建诸侯,各君其国,卿大夫亦世其官……其后积弊日甚……其势不得不变。于是先从在下者(平民)其……此已开后世布衣将相之列……秦皇尽灭六国以开一统之局……下虽无世禄之臣,而上犹是稽体之主(最高统治者仍由王族世袭)也。汉祖
暖气对于()相当于()对于黑暗
辩论是指双方都用一定理由的证据指出对方见解的矛盾错误,并论证自己对事物问题的看法的正确。下列选项中,符合定义的构成要件的是()。
下列选项中,属于我国非正式意义上的法律渊源的是( )。
下列哪一情形不属于“挪用公款归个人使用”()
最新回复
(
0
)