首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn(n≥2). (1)证明方程f2(x)=1有唯一的正根xn; (2)求xn.
设fn(x)=x+x2+…+xn(n≥2). (1)证明方程f2(x)=1有唯一的正根xn; (2)求xn.
admin
2018-01-23
31
问题
设f
n
(x)=x+x
2
+…+x
n
(n≥2).
(1)证明方程f
2
(x)=1有唯一的正根x
n
;
(2)求
x
n
.
选项
答案
(1)令φ
1
(x)=f
n
(x)-1,因为φ
n
(0)=-1<0,φ
n
(1)=n-1>0,所以φ
n
(x) 在(0,1)[*](0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根. 因为φ’
n
(x)=1+2x+…+nx
n-1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x) 在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,记为x
n
. (2)由f
n
(x
n
)-f
n+1
(x
n+1
)=0,得 (x
n
-x
n+1
)+(x
n
2
-x
n+1
2
)+…+(x
n
n
-x
n+1
n
)=x
n+1
n+1
>0,从而x
n
>x
n+1
,所以{x
n
}
n=1
∞
单调 减少,又x
n
>0(n=1,2,…),故[*]x
n
=A,显然A≤x
n
≤x
1
=1,由x
n
+ x
n
2
+…+x
n
n
得[*]=1,两边求极限得[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/PfX4777K
0
考研数学三
相关试题推荐
设实对称矩阵A满足A2=O,证明:A=O.
设f(u)具有二阶连续导数,而z=f(exsiny)满足方程求f(u).
设函数y=y(x)由参数方程
已知E(X)=1,E(X2)=3,用切比雪夫不等式估计p(-1
设X的概率密度为且P{x≤1}=.(Ⅰ)求a,b的值;(Ⅱ)求随机变量X的分布函数;(Ⅲ)求Y=X3的密度函数
设随机变量X~,Y~,且Cov(X,Y)=,则(X,Y)的联合分布律为________.
二维随机变量(X,Y)的概率密度为f(x,y)=则概率________.
设f(x)是奇函数,除x=0外处处连续,x=0是其第一类间断点,则∫0xf(t)dt是()
如果用X,Y分别表示将一枚硬币连掷8次正反面出现的次数,则t的一元二次方程t2+Xt+Y=0有重根的概率是________。
现有K个人在某大楼的一层进入电梯,该楼共n+1层。电梯在任一层时若无人下电梯则电梯不停(以后均无人再入电梯)。现已知每个人在任何一层(当然不包括第一层)下电梯是等可能的且相互独立,求电梯停止次数的平均值。
随机试题
分析者观察和比较相同项目增减变动的金额及幅度,把握企业资产、负债和所有者权益变动趋势的方法包括
盘庚之迁,胥怨者民也,非特朝廷士大夫而已。
A.引起急性感染性心内膜炎最常见的微生物B.引起亚急性感染性心内膜炎最常见的微生物C.引起病毒性心肌炎最常见的微生物D.引起肝炎最常见的微生物E.引起溃疡性结肠炎最常见的微生物柯萨奇病毒
A、糖酵解B、糖的有氧氧化C、2,3-二磷酸甘油酸支路D、三羧酸循环E、糖异生作用成熟红细胞的主要能量来源是
A.皮质醇B.泌乳素C.肾上腺素D.血管加压素E.促甲状腺激素释放激素神经垂体储存的激素是
某小型企业建筑,共4层,总建筑面积约6000m2,楼内设有室内外消火栓系统、自动喷水灭火系统、防排烟系统、火灾自动报警系统、灭火器、消防应急照明和疏散指示标志等消防设施及器材。该建筑消防应急照明和疏散指示系统采用自带电源集中控制型,企业定期对消防
根据《大型群众性活动安全管理条例》(中华人民共和国国务院令第505号)规定,大型群众性活动消防安全责任应由()负责。
=().
关于军队建设的基本内容,下列叙述正确的有()。
死亡宣告被撤销后,对被宣告死亡人的婚姻关系应作如下处理:()。
最新回复
(
0
)