首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn(n≥2). (1)证明方程f2(x)=1有唯一的正根xn; (2)求xn.
设fn(x)=x+x2+…+xn(n≥2). (1)证明方程f2(x)=1有唯一的正根xn; (2)求xn.
admin
2018-01-23
19
问题
设f
n
(x)=x+x
2
+…+x
n
(n≥2).
(1)证明方程f
2
(x)=1有唯一的正根x
n
;
(2)求
x
n
.
选项
答案
(1)令φ
1
(x)=f
n
(x)-1,因为φ
n
(0)=-1<0,φ
n
(1)=n-1>0,所以φ
n
(x) 在(0,1)[*](0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根. 因为φ’
n
(x)=1+2x+…+nx
n-1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x) 在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,记为x
n
. (2)由f
n
(x
n
)-f
n+1
(x
n+1
)=0,得 (x
n
-x
n+1
)+(x
n
2
-x
n+1
2
)+…+(x
n
n
-x
n+1
n
)=x
n+1
n+1
>0,从而x
n
>x
n+1
,所以{x
n
}
n=1
∞
单调 减少,又x
n
>0(n=1,2,…),故[*]x
n
=A,显然A≤x
n
≤x
1
=1,由x
n
+ x
n
2
+…+x
n
n
得[*]=1,两边求极限得[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/PfX4777K
0
考研数学三
相关试题推荐
计算二重积分其中D={(x,y)|x2+y2≤2,y≥x3).
设{un}是数列,则下列命题正确的是
设n个n维列向量α1,α2,…,αn线性无关,P为n阶方阵,证明:向量组Pα1,Pα2,…,Pαn线性无关∣P∣≠0.
已知3阶矩阵A与3维向量x,使得向量组x,Ax,A2x线性无关.且满足A3x=3Ax一2A2x.计算行列式∣A+E∣.
曲线y=x+sin2x在点处的切线方程是___________.
某公司通过电台及报纸两种方式做销售某种商品的广告,根据统计资料,销售收入R(万元)与电台广告费用x1(万元)及报纸广告费用x2(万元)之间的关系有如下经验公式:R=15+14x1+32x2—8x1x2—2x12一10x22(1)在广告费用不限的情况下,求
设X1,X2,…,Xm与Y1,Y2,…,Yn分别为来自相互独立的标准正态总体X与Y的简单随机样本,令Z=(Xi一)2+(Yi—)2,则D(z)=______.
已知随机变量X与Y都服从正态分布N(μ,σ),如果P{max{X,Y)>μ}=a(0<a<1),则P{min(X,Y)≤μ}=()
n元线性方程组Ax=B有两个解a、c,则下列方程的解是a-c的是()
设f(x)在(0,+∞)三次可导,且当x∈(0,+∞)时|f(x)|≤M0,|f’’’(x)|≤M3,其中M0,M3为非负常数,求证f’’(x)在(0,+∞)上有界.
随机试题
每日价格最大波动限制的目的是()。
LearnfromYourFailuresHaveyoueverfailed?Ifnot,itis【B1】______thatyouhavenevertakena【B2】______ontryinganyth
假性囊肿多发生在胰腺炎发病后( )。
不宜入煎剂的驱虫药是
小方上大学一年级,正在学习《刑事诉讼法》。她对人民法院的下列认识中,不正确的有()
下列关于立法的表述,不能成立的是()。(2010年单选9)
数据的存储结构是指
为达到把a、b中的值交换后输出的目的,某人编程如下:PrivateSubCommandl_Click()a%=10:b%=20Callswap(a,b)Printa,bEndSubPrivateSubswap
Peoplewhoworknightshiftsareconstantlyfightingagainstan“internalclock”intheirbodies.Quiteoftentheclocktellsth
A、8.B、7.C、5D、9A题目询问男士能在运动场待多长时间。上午9点到下午5点共8个小时,所以选A(8小时)。
最新回复
(
0
)