首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设fn(x)=x+x2+…+xn(n≥2). (1)证明方程f2(x)=1有唯一的正根xn; (2)求xn.
设fn(x)=x+x2+…+xn(n≥2). (1)证明方程f2(x)=1有唯一的正根xn; (2)求xn.
admin
2018-01-23
39
问题
设f
n
(x)=x+x
2
+…+x
n
(n≥2).
(1)证明方程f
2
(x)=1有唯一的正根x
n
;
(2)求
x
n
.
选项
答案
(1)令φ
1
(x)=f
n
(x)-1,因为φ
n
(0)=-1<0,φ
n
(1)=n-1>0,所以φ
n
(x) 在(0,1)[*](0,+∞)内有一个零点,即方程f
n
(x)=1在(0,+∞)内有一个根. 因为φ’
n
(x)=1+2x+…+nx
n-1
>0,所以φ
n
(x)在(0,+∞)内单调增加,所以φ
n
(x) 在(0,+∞)内的零点唯一,所以方程f
n
(x)=1在(0,+∞)内有唯一正根,记为x
n
. (2)由f
n
(x
n
)-f
n+1
(x
n+1
)=0,得 (x
n
-x
n+1
)+(x
n
2
-x
n+1
2
)+…+(x
n
n
-x
n+1
n
)=x
n+1
n+1
>0,从而x
n
>x
n+1
,所以{x
n
}
n=1
∞
单调 减少,又x
n
>0(n=1,2,…),故[*]x
n
=A,显然A≤x
n
≤x
1
=1,由x
n
+ x
n
2
+…+x
n
n
得[*]=1,两边求极限得[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/PfX4777K
0
考研数学三
相关试题推荐
若f’(x)=sinx,则f(x)的原函数之一是
设D={(z,y)|x2+y2≤x},求
某企业为生产甲、乙两种型号的产品投入的固定成本为10000(万元).设该企业生产甲、乙两种产品的产量分别为x(件)和y(件),且这两种产品的边际成本分别为(万元/件)与6+y(万元/件).求生产甲、乙两种产品的总成本函数C(x,y)(万元);
(I)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);(1I)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
求下列幂级数的和函数
设矩阵A=I一aaT,其中I是n阶单位矩阵.a是n维非零列向量,证明:A2=A的充要条件是aTa=1;
设随机变量X~,向量组a1,a2线性无关,则Xa1-a2,-a1+Xa2线性相关的概率为().
设f(u)具有连续的一阶导数,且当x>0,y>0时,z=满足.求z的表达式.求Ax=0的通解;
设X1,X2,…,Xn是来自总体X~N(μ,σ2)的简单随机样本,其中μ是已知常数,σ2是未知参数.求参数σ2的最大似然估计量;
设二维随机变量(X,Y)的概率密度为记U=max{X,Y},V=min{X,Y}.求E(UV).
随机试题
灸疮化脓一般在灸后多少天
A.肝俞B.心俞C.脾俞D.肺俞E.肾俞第11胸椎棘突下旁开15寸的腧穴是
在A公司的破产案件中,有关当事人提出的下列主张,哪些依法应予支持?(2005年试卷三第64题)
下列各项中不属于设计概算的内容是()。
在MMPI的临床量表中,英文缩写()代表轻躁狂。
结合《义务教育物理课程标准(2011年版)》的三维课程目标,简述物理学史上一个不迷信权威,勇于创新,敢于提出与别人不同见解的史实。
从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性:
反智主义是一种存在于文化或思想中的态度,而不是一套思想理论。反智主义可分为两大类:一种是对于智性、知识的反对或怀疑,认为智性或知识对于人生有害而无益。另一种则是对于知识分子的怀疑和鄙视。根据上述定义,下列不属于反智主义现象的是:
Inthefollowingtext,somesentenceshavebeenremoved.ForQuestions41-45,choosethemostsuitableonefromthelist(A、B、C、
SalesWhenastoresells【T1】______atacostlowerthanusual,itiscalledasale.Saleslastfor【T2】______.Thenthecosti
最新回复
(
0
)