首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,—1,3)T,又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,—3,1,0)T, (Ⅰ)求矩阵A; (Ⅱ)如果齐次线
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,—1,3)T,又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,—3,1,0)T, (Ⅰ)求矩阵A; (Ⅱ)如果齐次线
admin
2015-04-30
60
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是
η
1
=(1,3,0,2)
T
,η
2
=(1,2,—1,3)
T
,又知齐次方程组Bx=0的基础解系是
β
1
=(1,1,2,1)
T
,β
2
=(0,—3,1,0)
T
,
(Ⅰ)求矩阵A;
(Ⅱ)如果齐次线性方程组Az=0与Bx=0有非零公共解,求a的值并求公共解.
选项
答案
(Ⅰ)记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
x=0的解.对C
T
作初等行变换,有 [*] 得到C
T
x=0的基础解系为α=(3,一1,1,0)
T
,α=(一5,1,0,1)
T
.所以矩阵A=[*] (Ⅱ)设齐次线性方程组Ax=0与Bx=0的非零公共解为γ,则γ既可由η
1
,η
2
线性表出,也可由β
1
,β
2
线性表出,故可设 y=x
1
η
1
+x
2
η
2
=一x
3
β
1
一x
4
β
2
,于是 x
1
η
1
+x
2
η
2
+x
3
β
1
一x
4
β
2
=0.对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有 [*] 当a=0时,解出x
4
=t,x
3
=一t,x
2
=一t,x
1
=2t. 因此Ax=0与Bx=0的公共解为y=2tη
1
—tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/PfbD777K
0
考研数学二
相关试题推荐
下列文献的产生时代按照时间先后顺序排列不正确的一项是()。
按照不同的分类标准,决策可以分为()。
文艺复兴的指导思想是人文主义,其突出的特征是()。
报考博士生的条件应是最近两年的毕业研究生,思想进步,业务优秀,身体健康,年龄一般不超过四十岁,_______。填入划横线部分最恰当的一项是()。
古车上的篷盖有的用席篷,有的用麻布之类制作,顶上比较陡,到篷边上挑起而成为曲线。这样的好处,一是可以不挡住乘车人的视线,二是可以使顶篷上的雨水排得更远。这段话的主要内容是()。
设F(x,y)在点(x0,y0)某邻域有连续的偏导数,F(x0,y0)=0,则F’y(x0,y0)≠0是F(x,y)=0在点(x0,y0)某邻域能确定一个连续函数y=y(x),它满足y0=y(x0),并有连续的导数的_________条件.
已知向量β=(a1,a2,a3,a4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,—1,—3)T,α4=(0,0,3,3)T线性表出.(Ⅰ)求a1,a2,a3,a4应满足的条件;(Ⅱ)求向量组α1,α2,α3,α4的
设极坐标系下的累次积分I=(rcosθ,rsinθ)rdθ,将I写成先对r后对θ的累次积分,则________.
计算二重积分,其中积分区域D={(x,y)|x2+y2≤1}.
在方程组中a1+a2一b1+b2,证明该方程组有解,并求出其通解.
随机试题
______是课程设置过程中的最后阶段。
Atthemeetingtheydiscusseddifferent______tothestudyofmathematics.
患者男性,35岁。拔除术后四日,拔牙窝出现持续性疼痛并向耳颞部放射,检查见拔牙窝内空虚,有异味。
建筑钢材的力学性能,钢材发生断裂时所能承受的永久变形的能力称为()。
以下属于注册建造师(房屋建筑工程专业)施工管理签章文件目录的主要内容的有()。
评定授予警衔的人员必须是属于公安机关内人民警察建制的在编存职的人民警察。()
2016年,A市旅游服务价值年值比农林牧渔业总产值年值多:
歌德的______与荷马史诗、但丁的《神曲》等齐名,被文学史家认为是史诗性的巨著。
Whataretheytalkingabout?
A、Theyarenowseenastheexclusivepossessionofthecomputergeeks.B、Theyusedtobeawayofkeepinganonlinediaryknown
最新回复
(
0
)