首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,—1,3)T,又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,—3,1,0)T, (Ⅰ)求矩阵A; (Ⅱ)如果齐次线
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是 η1=(1,3,0,2)T,η2=(1,2,—1,3)T,又知齐次方程组Bx=0的基础解系是 β1=(1,1,2,1)T,β2=(0,—3,1,0)T, (Ⅰ)求矩阵A; (Ⅱ)如果齐次线
admin
2015-04-30
67
问题
已知A是2×4矩阵,齐次方程组Ax=0的基础解系是
η
1
=(1,3,0,2)
T
,η
2
=(1,2,—1,3)
T
,又知齐次方程组Bx=0的基础解系是
β
1
=(1,1,2,1)
T
,β
2
=(0,—3,1,0)
T
,
(Ⅰ)求矩阵A;
(Ⅱ)如果齐次线性方程组Az=0与Bx=0有非零公共解,求a的值并求公共解.
选项
答案
(Ⅰ)记C=(η
1
,η
2
),由AC=A(η
1
,η
2
)=0知C
T
A
T
=0,则矩阵A
T
的列向量(即矩阵A的行向量)是齐次线性方程组C
T
x=0的解.对C
T
作初等行变换,有 [*] 得到C
T
x=0的基础解系为α=(3,一1,1,0)
T
,α=(一5,1,0,1)
T
.所以矩阵A=[*] (Ⅱ)设齐次线性方程组Ax=0与Bx=0的非零公共解为γ,则γ既可由η
1
,η
2
线性表出,也可由β
1
,β
2
线性表出,故可设 y=x
1
η
1
+x
2
η
2
=一x
3
β
1
一x
4
β
2
,于是 x
1
η
1
+x
2
η
2
+x
3
β
1
一x
4
β
2
=0.对(η
1
,η
2
,β
1
,β
2
)作初等行变换,有 [*] 当a=0时,解出x
4
=t,x
3
=一t,x
2
=一t,x
1
=2t. 因此Ax=0与Bx=0的公共解为y=2tη
1
—tη
2
=t(1,4,1,1)
T
,其中t为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/PfbD777K
0
考研数学二
相关试题推荐
目前,世界上发现的最早的纸出现在东汉年间。()
下列诗句与季节对应不正确的是()。
当前,城市化过程中产生的问题主要有()。
A、 B、 C、 D、 C本题的图形规律是每组图形都是由两个直线图形和一个曲线图形组成,并且直线图形都是轴对称图形。
现要在一块长25公里、宽8公里的长方形区域内设置哨塔,每个哨塔的监视半径为5公里。如果要求整个区域内的每个角落都能被监视到,则至少需要设置多少个哨塔?
当考虑了人们的预期因素之后,菲利普斯曲线将发生怎样的变化?这种变化有什么样的政策意义?
设函数U=f(χz,yz,χ)的所有二阶偏导数都连续,则=().
设f(χ)在区间[a,b]上连续,在(a,b)内可导,f′(χ)>0,且存在.证明:(Ⅰ)在(a,b)内有fχ)>0;(Ⅱ)存在ξ∈(a,b),使得;(Ⅲ)存在ξ∈(a,b),使得.
设A为三阶矩阵,其特征值为λ1=λ2=1,λ32.其对应的线性无关的特征向量为α1,α2,α3,令P=(α1-α2,2α1+α2,4α3),则P-1AP=()
设f(x)为连续函数,且x2+y2+z2=∫xyf(x+y-t)dt,则z([*)=________.
随机试题
A.转化B.转导C.溶血性转换D.接合E.原生质融合供体菌通过性菌毛将遗传物质转移给受体菌称为()
诊断颅底骨折的主要依据是
明显消瘦,肚皮膨胀,甚则青筋暴露,多是
最易伤人阴位的六淫邪气是
更适用于企业筹措新资金的综合资金成本是按()计算的。
结合教学实际谈谈建构主义的学习观。
数据的存储结构是指()。
Thesensibleplacetobuildnewhouses,factoriesandofficesiswhopeopleare,incitiesandtownswhereinfrastructureisin
ItwasProfessorSmith________didtheexperimentinthelabyesterdayevening.
WhenToyotaMotorCorp.movedoneofitsdivisionsintoanenvironmentallyfriendly,or"green",buildinginTorrancethreeyear
最新回复
(
0
)