首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
验证α1=(1,一1,0)T,α2=(2,1,3)T,α3=(3,1,2)T为R3的一个基,并把β1=(5,0,7)T,β2=(一9,一8,一13)T用这个基线性表示.
admin
2016-01-11
59
问题
验证α
1
=(1,一1,0)
T
,α
2
=(2,1,3)
T
,α
3
=(3,1,2)
T
为R
3
的一个基,并把β
1
=(5,0,7)
T
,β
2
=(一9,一8,一13)
T
用这个基线性表示.
选项
答案
设A=(α
1
,α
2
,α
3
),要证α
1
,α
2
,α
3
是R
3
的一个基.只需证明A等价于E即可.且x
1
α
1
+x
2
α
2
+x
3
α
3
=β
1
,x
12
α
1
+x
22
α
2
+x
32
α
3
=β
2
. 于是,以α
1
,α
2
,α
3
,β
1
,β
2
为列向量作矩阵,并对该矩阵施初等行变换,得[*] 显然A等价E,故α
1
,α
2
,α
3
是R
3
的一个基,且2α
1
+3α
2
一α
3
=β
1
,3α
1
一3α
2
—2α
3
=β
2
.
解析
本题考查向量空间的基的概念和向量线性表示的概念.
转载请注明原文地址:https://kaotiyun.com/show/Pi34777K
0
考研数学二
相关试题推荐
设f(x)是连续的偶函数,且f(x)以2π为周期,则g(x)=∫0xsin(x-t)f(t)dt必是()
设A=,b=,方程组Ax=b有无穷多解.(Ⅰ)求a的值及Ax=b的通解;(Ⅱ)求一个正交变换x=Qy,化二次型f(x1,x2,x3)=xTAx为标准形.(Ⅲ)求一个可逆线性变换将(Ⅱ)中的f(x1,x2,x3)化为规范形.
设P{X=0)=1/4,P{X=1}=3/4,P{Y=-1/2}=1,3维向量组α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为()
设函数y(x)是微分方程y’(x)+1/x·y(x)=1/x2(x>0)的解,且y(1)=0.求y(x);
已知f(x)在(-∞,+∞)内可导,且,求a的值.
若线性方程组有解,则常数α1,α2,α3,α4应满足条件_____.
设A为三阶矩阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2一α3+α1,Aα3=α1+α2.(1)求A的全部特征值;(2)A是否可对角化?
设向量组α1,α2,α3线性无关,β1不可由α1,α2,α3线性表示,而β2可由α1,α2,α3线性表示,则下列结论正确的是().
设函数f(x)连续,且∫0xtf(2x-t)dt=arctanx2,已知f(1)=1,求∫12f(x)dx的值。
随机试题
生物分为五个界,分别是
关于β2-微球蛋白叙述错误的是
男性,25岁,近3年来常有胸痛、发作性晕厥,心脏听诊胸骨左缘3、4肋间有收缩期杂音,心脏轻度增大,心电图见Ⅱ、Ⅲ、aVF、有病理性Q波。下列体检哪项是肥厚型原发性心肌病特征
最可能的诊断是如患者发生头痛、呕吐,继而意识模糊,应考虑
巴比妥类药物中毒解救时,碱化尿液的目的是
A、祛风解表,胜湿止痛,解痉B、祛风解表,止血C、解表散寒,祛风胜湿,止痛D、祛风湿,止痹痛,利水消肿E、祛风湿,止痹痛,通鼻窍防风的功效是
患者,女,28岁。右前臂圆形肿物如指头大小,质硬,表面光滑,边缘清楚,无粘连,活动度大。应首先考虑的是
企业所得税,是指对我国境内的一切企业(不包括外商投资企业和外国企业),就其来源于我国境内外的生产经营所得和其他所得而征收的一种税。企业所得税的特点有()。
在保荐业务中,持续督导发行人应履行的义务有()。I.规范运作Ⅱ.审慎工作Ⅲ.信守承诺Ⅳ.信息披露
A-----Guardagainstdamp.J-----Openhere.B-----Handlewithcare.K-----Openindarkroom.C-----Keepaway
最新回复
(
0
)